清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of TransUnet Deep Learning Model for Automatic Segmentation of Cervical Cancer in Small-Field T2WI Images

人工智能 分割 宫颈癌 领域(数学) 深度学习 计算机科学 癌症 计算机视觉 医学 内科学 数学 纯数学
作者
Z. SHI,Feifei Zhang,Xiong Zhang,Pan Ru,Yufan Cheng,Song Huang,Qi Kang,Jianbo Guo,Xin Peng,Yulin Li
标识
DOI:10.1007/s10278-025-01464-z
摘要

Effective segmentation of cervical cancer tissue from magnetic resonance (MR) images is crucial for automatic detection, staging, and treatment planning of cervical cancer. This study develops an innovative deep learning model to enhance the automatic segmentation of cervical cancer lesions. We obtained 4063 T2WI small-field sagittal, coronal, and oblique axial images from 222 patients with pathologically confirmed cervical cancer. Using this dataset, we employed a convolutional neural network (CNN) along with TransUnet models for segmentation training and evaluation of cervical cancer tissues. In this approach, CNNs are leveraged to extract local information from MR images, whereas Transformers capture long-range dependencies related to shape and structural information, which are critical for precise segmentation. Furthermore, we developed three distinct segmentation models based on coronal, axial, and sagittal T2WI within a small field of view using multidirectional MRI techniques. The dice similarity coefficient (DSC) and mean Hausdorff distance (AHD) were used to assess the performance of the models in terms of segmentation accuracy. The average DSC and AHD values obtained using the TransUnet model were 0.7628 and 0.8687, respectively, surpassing those obtained using the U-Net model by margins of 0.0033 and 0.3479, respectively. The proposed TransUnet segmentation model significantly enhances the accuracy of cervical cancer tissue delineation compared to alternative models, demonstrating superior performance in overall segmentation efficacy. This methodology can improve clinical diagnostic efficiency as an automated image analysis tool tailored for cervical cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
kzxhql发布了新的文献求助10
9秒前
24秒前
27秒前
V_I_G完成签到 ,获得积分10
29秒前
minnie完成签到 ,获得积分10
30秒前
36秒前
专注的觅云完成签到 ,获得积分10
39秒前
怪怪完成签到,获得积分10
43秒前
Nene完成签到 ,获得积分20
47秒前
52秒前
xxfsx应助kzxhql采纳,获得10
55秒前
xxfsx应助kzxhql采纳,获得10
55秒前
1分钟前
Funnymudpee发布了新的文献求助10
1分钟前
1分钟前
MTF完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Eileen完成签到 ,获得积分0
2分钟前
合不着完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
天玄发布了新的文献求助10
5分钟前
5分钟前
5分钟前
天玄发布了新的文献求助10
5分钟前
6分钟前
糟糕的翅膀完成签到,获得积分10
6分钟前
cy0824完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624