清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting

计算机科学 人工智能 遗忘 适应(眼睛) 考试(生物学) 机器学习 认知心理学 心理学 生物 古生物学 神经科学
作者
Mingkui Tan,Guohao Chen,Jiaxiang Wu,Yifan Zhang,Yaofo Chen,Peilin Zhao,Shuaicheng Niu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tpami.2025.3560696
摘要

Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and testing data by adapting a given model w.r.t. any testing sample. This task is particularly important when the test environment changes frequently. Although some recent attempts have been made to handle this task, we still face two key challenges: 1) prior methods have to perform backpropagation for each test sample, resulting in unbearable optimization costs to many applications; 2) while existing TTA solutions can significantly improve the test performance on out-of-distribution data, they often suffer from severe performance degradation on in-distribution data after TTA (known as catastrophic forgetting). To this end, we have proposed an Efficient Anti-Forgetting Test-Time Adaptation (EATA) method which develops an active sample selection criterion to identify reliable and non-redundant samples for test-time entropy minimization. To alleviate forgetting, EATA introduces a Fisher regularizer estimated from test samples to constrain important model parameters from drastic changes. However, in EATA, the adopted entropy loss consistently assigns higher confidence to predictions even when the samples are underlying uncertain, leading to overconfident predictions that underestimate the data uncertainty. To tackle this, we further propose EATA with Calibration (EATA-C) to separately exploit the reducible model uncertainty and the inherent data uncertainty for calibrated TTA. Specifically, we compare the divergence between predictions from the full network and its sub-networks to measure the reducible model uncertainty, on which we propose a test-time uncertainty reduction strategy with divergence minimization loss to encourage consistent predictions instead of overconfident ones. To further re-calibrate predicting confidence on different samples, we utilize the disagreement among predicted labels as an indicator of the data uncertainty. Based on this, we devise a min-max entropy regularization to selectively increase and decrease predicting confidence for confidence re-calibration. Note that EATA-C and EATA are different on the adaptation objective, while EATA-C still benefits from the active sample selection criterion and anti-forgetting Fisher regularization proposed in EATA. Extensive experiments on image classification and semantic segmentation verify the effectiveness of our proposed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殷勤的紫槐完成签到,获得积分10
4秒前
NexusExplorer应助开心果采纳,获得10
45秒前
包容的忆灵完成签到 ,获得积分10
46秒前
宁静致远QY完成签到,获得积分10
57秒前
革微桂完成签到 ,获得积分10
58秒前
TOUHOUU完成签到 ,获得积分10
59秒前
1分钟前
LINDENG2004完成签到 ,获得积分10
1分钟前
xue112完成签到 ,获得积分10
1分钟前
beihaik完成签到 ,获得积分10
2分钟前
123456完成签到 ,获得积分10
2分钟前
英俊的铭应助二东采纳,获得10
2分钟前
平常以云完成签到 ,获得积分10
2分钟前
冷傲半邪完成签到,获得积分10
2分钟前
gmc完成签到 ,获得积分10
2分钟前
昭荃完成签到 ,获得积分0
3分钟前
3分钟前
二东完成签到,获得积分10
3分钟前
二东发布了新的文献求助10
3分钟前
愉快的丹彤完成签到 ,获得积分10
3分钟前
牧长一完成签到 ,获得积分0
3分钟前
fyy完成签到 ,获得积分10
3分钟前
俭朴的世界完成签到 ,获得积分10
3分钟前
沉沉完成签到 ,获得积分0
3分钟前
彭于晏应助tigeryao采纳,获得10
4分钟前
小胖完成签到 ,获得积分10
4分钟前
4分钟前
锦城纯契完成签到 ,获得积分10
4分钟前
qq完成签到 ,获得积分10
4分钟前
tigeryao发布了新的文献求助10
4分钟前
4分钟前
开心果发布了新的文献求助10
4分钟前
开心果完成签到,获得积分10
4分钟前
迷路的天亦完成签到 ,获得积分10
5分钟前
默默莫莫完成签到 ,获得积分10
5分钟前
naczx完成签到,获得积分0
5分钟前
欣欣完成签到 ,获得积分10
5分钟前
JoJo2025发布了新的文献求助30
5分钟前
leave完成签到 ,获得积分0
5分钟前
酷波er应助糯玉米采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Ricci Solitons in Dimensions 4 and Higher 470
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4780210
求助须知:如何正确求助?哪些是违规求助? 4110035
关于积分的说明 12714111
捐赠科研通 3833074
什么是DOI,文献DOI怎么找? 2114058
邀请新用户注册赠送积分活动 1137404
关于科研通互助平台的介绍 1022258