亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrated Fleet and Demand Control for On-Demand Meal Delivery Platforms

可扩展性 控制(管理) 收入 杠杆(统计) 运筹学 计算机科学 按需 业务 运营管理 营销 经济 财务 工程类 商业 数据库 人工智能 机器学习
作者
Florentin D. Hildebrandt,Žiga Lesjak,Arne Strauss,Marlin W. Ulmer
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:3
标识
DOI:10.1287/mnsc.2022.02039
摘要

We show how integrated fleet and demand control can be effectively used to benefit all stakeholders in on-demand restaurant meal delivery. Fleet control—that is, the assignment of orders to couriers—is the main control mechanism to steer delivery operations. Another, mostly overlooked, control mechanism is demand control via display optimization—that is, the ordering of restaurants’ display positions on the meal delivery platform. Based on historical customer interactions with a meal delivery platform, we reveal that display positions have a major effect on customers’ restaurant choices. We then leverage this effect by proposing an integrated, scalable reinforcement learning approach that simultaneously optimizes fleet and demand control. We employ our solution method on simulations of large-scale on-demand meal delivery operations with endogenous customer behavior to derive managerial insights on the value of integrated fleet and demand control. Our results demonstrate that integrated fleet and demand control reduces delays experienced by customers, allows for more services per driver, decreases total travel time per driver, guarantees fresher meals, and provides equal opportunities for all participating restaurants. Our results further highlight that selling display positions may cause operational inflexibility and, therefore, may cause significant delays in the fulfillment process. Finally, we show that careful display optimization not only improves service quality, but also platform revenue. This paper was accepted by Elena Katok, operations management. Funding: Financial support from the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) [Project 510629371] is gratefully acknowledged. F. D. Hildebrandt received financial support from the DFG [Project 413322447]. M. W. Ulmer received financial support from the DFG Emmy Noether Programme [Project 444657906]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.02039 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代的奇异果完成签到,获得积分10
7秒前
张杰列夫完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
27秒前
oscar完成签到,获得积分10
31秒前
32秒前
33秒前
贱小贱发布了新的文献求助10
34秒前
36秒前
唐泽雪穗发布了新的文献求助90
40秒前
44秒前
脑洞疼应助Aoka采纳,获得30
46秒前
Bi8bo发布了新的文献求助10
50秒前
lan完成签到,获得积分10
52秒前
52秒前
充电宝应助俭朴的乐巧采纳,获得10
55秒前
lan发布了新的文献求助10
58秒前
stresm完成签到,获得积分10
58秒前
1分钟前
1分钟前
小伙子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
冬冬林完成签到,获得积分10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
椰椰完成签到 ,获得积分10
1分钟前
平城落叶完成签到,获得积分10
1分钟前
所所应助俭朴的乐巧采纳,获得10
1分钟前
Koala04完成签到,获得积分10
1分钟前
完美世界应助严究生采纳,获得10
1分钟前
vagary完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
完美世界应助安蓝采纳,获得10
2分钟前
2分钟前
2分钟前
星辰大海应助俭朴的乐巧采纳,获得10
2分钟前
Tirachen完成签到,获得积分20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4694571
求助须知:如何正确求助?哪些是违规求助? 4065049
关于积分的说明 12568438
捐赠科研通 3763783
什么是DOI,文献DOI怎么找? 2078694
邀请新用户注册赠送积分活动 1107019
科研通“疑难数据库(出版商)”最低求助积分说明 985209