Improving aerodynamic performance and flow field of a centrifugal compressor by a novel Fourier series Kolmogorov-Arnold network and non-dominated sorting genetic algorithm-II

物理 傅里叶级数 空气动力学 离心式压缩机 分类 系列(地层学) 算法 领域(数学) 流量(数学) 遗传算法 快速傅里叶变换 傅里叶分析 傅里叶变换 机械 统计物理学 数学分析 计算机科学 叶轮 古生物学 数学 量子力学 机器学习 纯数学 生物
作者
Yuqian Zhang,Ming Zhu,Jia-Jia Mao,Yue Shu,Zhengdao Wang,Hui Yang,Wei Zhang,Yikun Wei
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (5) 被引量:1
标识
DOI:10.1063/5.0269739
摘要

In this paper, the aerodynamic performance and flow field of the centrifugal compressor are deeply studied by a novel Fourier series Kolmogorov-Arnold network (FKAN) and non-dominated sorting genetic algorithm-II (NSGA-II). Compared to artificial neural networks (ANNs) and Kolmogorov-Arnold networks, the predictive performance (accuracy) of FKAN is not only significantly improved, but also the prediction error is significantly reduced. The optimization of a centrifugal compressor is conducted by integrating FKAN with the NSGA-II. The blades of the optimized impeller are offset toward the pressure surface at the root and bend toward the suction surface overall, which helps us to improve the aerodynamic performance by reducing flow separation and tip leakage flows. The aerodynamic performance is effectively improved across the entire range of operating conditions for optimized centrifugal compressors. Notably, the polytropic efficiency of the centrifugal compressor is increased by 1.47%, and the pressure ratio is improved by 3.05% at a mass flow rate of 1.65 kg/s. The polytropic efficiency of the centrifugal compressor effectively rises as much as 1.04%, and the pressure ratio effectively rises as much as 2.58% at the design condition of 1.77 kg/s. This study contributes to the development of a novel surrogate modeling technique and the understanding of the physical mechanism for performance improvement in fluid machinery optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时s完成签到,获得积分10
1秒前
yang发布了新的文献求助10
1秒前
小周完成签到,获得积分10
2秒前
2秒前
3秒前
ofha应助赫连涵柏采纳,获得10
4秒前
七七发布了新的文献求助10
4秒前
土豆完成签到,获得积分20
4秒前
大个应助wfkjxywdq采纳,获得10
4秒前
5秒前
5秒前
木木完成签到,获得积分20
5秒前
fanfan发布了新的文献求助10
5秒前
卡卡发布了新的文献求助10
6秒前
6秒前
宇圆少女科研版完成签到,获得积分10
7秒前
赘婿应助wwz采纳,获得10
7秒前
xutingfeng完成签到,获得积分10
7秒前
繁星背后发布了新的文献求助10
8秒前
木木发布了新的文献求助10
8秒前
烟花应助如果课题会讲话采纳,获得10
8秒前
9秒前
归尘发布了新的文献求助10
9秒前
9秒前
10秒前
Lucas应助蓝胖子采纳,获得10
10秒前
黄辉冯发布了新的文献求助10
10秒前
zhou完成签到,获得积分10
11秒前
搜集达人应助yang采纳,获得10
11秒前
11秒前
猪猪hero应助元谷雪采纳,获得10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
白菜完成签到,获得积分10
12秒前
脑洞疼应助科研通管家采纳,获得30
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259688
求助须知:如何正确求助?哪些是违规求助? 4421251
关于积分的说明 13762275
捐赠科研通 4295121
什么是DOI,文献DOI怎么找? 2356733
邀请新用户注册赠送积分活动 1353120
关于科研通互助平台的介绍 1314279