Large Language Model Based Assessment of Clinical Reasoning Documentation in the Electronic Health Record Across Two Institutions: Development and Validation Study (Preprint)

预印本 电子健康档案 文档 健康档案 计算机科学 数据科学 自然语言处理 心理学 万维网 医疗保健 程序设计语言 经济 经济增长
作者
Verity Schaye,David J DiTullio,Benedict Guzman,Scott Vennemeyer,Hanniel Shih,Ilan Reinstein,Danielle Weber,Abbie Goodman,Danny T Y Wu,Daniel J. Sartori,Sally A. Santen,Larry D. Gruppen,Yindalon Aphinyanaphongs,Jesse Burk‐Rafel
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
被引量:3
标识
DOI:10.2196/67967
摘要

Clinical reasoning (CR) is an essential skill; yet, physicians often receive limited feedback. Artificial intelligence holds promise to fill this gap. We report the development of named entity recognition (NER), logic-based and large language model (LLM)-based assessments of CR documentation in the electronic health record across 2 institutions (New York University Grossman School of Medicine [NYU] and University of Cincinnati College of Medicine [UC]). The note corpus consisted of internal medicine resident admission notes (retrospective set: July 2020-December 2021, n=700 NYU and 450 UC notes and prospective validation set: July 2023-December 2023, n=155 NYU and 92 UC notes). Clinicians rated CR documentation quality in each note using a previously validated tool (Revised-IDEA), on 3-point scales across 2 domains: differential diagnosis (D0, D1, and D2) and explanation of reasoning, (EA0, EA1, and EA2). At NYU, the retrospective set was annotated for NER for 5 entities (diagnosis, diagnostic category, prioritization of diagnosis language, data, and linkage terms). Models were developed using different artificial intelligence approaches, including NER, logic-based model: a large word vector model (scispaCy en_core_sci_lg) with model weights adjusted with backpropagation from annotations, developed at NYU with external validation at UC, NYUTron LLM: an NYU internal 110 million parameter LLM pretrained on 7.25 million clinical notes, only validated at NYU, and GatorTron LLM: an open source 345 million parameter LLM pretrained on 82 billion words of clinical text, fined tuned on NYU retrospective sets, then externally validated and further fine-tuned at UC. Model performance was assessed in the prospective sets with F1-scores for the NER, logic-based model and area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) for the LLMs. At NYU, the NYUTron LLM performed best: the D0 and D2 models had AUROC/AUPRC 0.87/0.79 and 0.89/0.86, respectively. The D1, EA0, and EA1 models had insufficient performance for implementation (AUROC range 0.57-0.80, AUPRC range 0.33-0.63). For the D1 classification, the approach pivoted to a stepwise approach taking advantage of the more performant D0 and D2 models. For the EA model, the approach pivoted to a binary EA2 model (ie, EA2 vs not EA2) with excellent performance, AUROC/AUPRC 0.85/ 0.80. At UC, the NER, D-logic-based model was the best performing D model (F1-scores 0.80, 0.74, and 0.80 for D0, D1, D2, respectively. The GatorTron LLM performed best for EA2 scores AUROC/AUPRC 0.75/ 0.69. This is the first multi-institutional study to apply LLMs for assessing CR documentation in the electronic health record. Such tools can enhance feedback on CR. Lessons learned by implementing these models at distinct institutions support the generalizability of this approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kuailexianchi完成签到,获得积分10
刚刚
1秒前
ScholarZmm完成签到,获得积分10
1秒前
闪耀吨吨完成签到,获得积分10
2秒前
safsafdfasf发布了新的文献求助10
3秒前
烟花应助Albafika采纳,获得10
3秒前
常大美女完成签到,获得积分10
4秒前
烟花应助kkkl采纳,获得30
4秒前
XiaomeiChen完成签到,获得积分10
4秒前
HHD发布了新的文献求助10
4秒前
4秒前
白石杏完成签到,获得积分10
5秒前
lingzhi完成签到 ,获得积分10
5秒前
ling22发布了新的文献求助10
6秒前
一叶知秋应助谷粱绝山采纳,获得10
6秒前
123完成签到 ,获得积分10
6秒前
楠木木完成签到 ,获得积分10
8秒前
神奇海螺完成签到,获得积分10
8秒前
9秒前
2ER0完成签到,获得积分10
10秒前
天天完成签到,获得积分10
10秒前
10秒前
11秒前
小M完成签到,获得积分10
11秒前
袋鼠完成签到,获得积分10
13秒前
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得30
14秒前
Hello应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得20
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5023977
求助须知:如何正确求助?哪些是违规求助? 4261209
关于积分的说明 13280895
捐赠科研通 4068035
什么是DOI,文献DOI怎么找? 2225166
邀请新用户注册赠送积分活动 1233842
关于科研通互助平台的介绍 1157856