亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification of seed corn ears based on custom lightweight convolutional neural network and improved training strategies

计算机科学 卷积神经网络 联营 人工智能 规范化(社会学) 模式识别(心理学) 特征(语言学) 上下文图像分类 图像(数学) 语言学 哲学 社会学 人类学
作者
Xiang Ma,Yonglei Li,Lipengcheng Wan,Zexin Xu,Song JianNong,Jinqiu Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:120: 105936-105936 被引量:9
标识
DOI:10.1016/j.engappai.2023.105936
摘要

Abnormal ears (containing phenotypic differences in seeds, particularly in color) are manually removed to improve seed purity during seed production in the field or factory. Traditional convolutional neural networks (CNN) have significant parameters and greater network depth, making them unsuitable for deployment in resource-constrained embedded devices. This paper proposes a deep learning model (CornNet) based on custom lightweight CNN and improved training strategies for corn ears classification to address this issue. We improved the structure of VGG16 by reducing the number of convolution layers (Conv) and its channels to change network depth and used the global average pooling layer (GAP) instead of the fully connected layer (FC) to achieve a lightweight model. The Squeeze-and-Excitation network (SE) and Batch Normalization (BN) were used to improve the feature extraction ability and prevent gradient disappearance. The image acquisition environment, similar to the production line, was constructed to obtain images with consistent features to reduce the data required for training. Two training strategies (i.e., data augmentation and dynamic learning rate) were optimized to improve performance. The results showed that CornNet performed well compared to MobileNet, ShuffleNet, VGG16, ResNet50 and AlexNet in terms of accuracy, F1-score, model size, and FLOPs of 98.56 %, 98.93 %, 0.42MB and 0.07G, respectively. The improved training strategies improved accuracy by 3.07% to 16.08% and 0.26% to 30.91%. The CornNet proposed in this paper achieved a good balance between performance and computational cost, and it can obtain better generalization ability on small datasets than the traditional deeper networks model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助JoeyJin采纳,获得10
9秒前
9秒前
26秒前
wwww发布了新的文献求助10
30秒前
咯哦完成签到,获得积分10
31秒前
咯哦发布了新的文献求助20
42秒前
能干冰旋完成签到,获得积分10
44秒前
浮游应助科研通管家采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
57秒前
59秒前
FashionBoy应助wwww采纳,获得30
1分钟前
科研通AI6应助哈哈思想家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
JoeyJin发布了新的文献求助10
1分钟前
wandali关注了科研通微信公众号
1分钟前
2分钟前
kyyp发布了新的文献求助10
2分钟前
2分钟前
2分钟前
LINDENG2004完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
阿兹卡班完成签到 ,获得积分10
4分钟前
nicolaslcq完成签到,获得积分0
4分钟前
在水一方应助科研通管家采纳,获得10
4分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324260
求助须知:如何正确求助?哪些是违规求助? 4465245
关于积分的说明 13894232
捐赠科研通 4357091
什么是DOI,文献DOI怎么找? 2393173
邀请新用户注册赠送积分活动 1386688
关于科研通互助平台的介绍 1357052