Semisupervised Change Detection With Feature-Prediction Alignment

计算机科学 特征(语言学) 人工智能 像素 一致性(知识库) 变更检测 模式识别(心理学) 块(置换群论) 图像(数学) 机器学习 数学 哲学 语言学 几何学
作者
Xueting Zhang,Xin Huang,Jiayi Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:23
标识
DOI:10.1109/tgrs.2023.3247605
摘要

Change detection (CD) has received raising attention for its broad application value. However, traditional fully supervised CD methods have a huge demand for pixel-level annotations, which are laborious and even impossible in some few-shot scenarios. Recently, several semisupervised CD (SSCD) methods have been proposed to utilize numerous unlabeled remote sensing image (RSI) pairs, which can largely reduce the annotation dependence. These methods are mainly based on: 1) adversarial learning, whose optimization direction is difficult to control as a black-box method, or 2) feature-consistency learning, which has no explicit physical meaning. To deal with these difficulties, we propose a novel progressive SSCD framework in this article, termed feature-prediction alignment (FPA). FPA can efficiently utilize unlabeled RSI pairs for training by two alignment strategies. First, a class-aware feature alignment (FA) strategy is designed to align the area-level change/no-change feature extracted from different unlabeled RSI pairs (i.e., across regions) with the awareness of their locations, in order to reduce the feature difference within the same classes. Second, a pixelwise prediction alignment (PA) is devised to align the pixel-level change prediction of strongly augmented unlabeled RSI pairs to the pseudo-labels calculated from the corresponding weakly augmented counterparts, in order to reduce the prediction uncertainty of various RSI transformations with physical meaning. Experiments are carried out on four widely used CD benchmarks, including Learning, Vision and Remote Sensing Laboratory (LEVIR-CD), Wuhan University building CD (WHU-CD), CDD, and GZ-CD, and our FPA achieves the state-of-the-art performance. The experimental results demonstrate the superiority of our method in both effectiveness and generalization. Our code is available at https://github.com/zxt9/FPA-SSCD .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
刚刚
Archy完成签到,获得积分10
1秒前
野草发布了新的文献求助10
1秒前
coconut完成签到,获得积分10
2秒前
想要赚大钱完成签到,获得积分10
2秒前
凡白应助科研挂采纳,获得10
2秒前
yehaidadao发布了新的文献求助30
3秒前
小琪发布了新的文献求助10
3秒前
充电宝应助温暖南莲采纳,获得10
4秒前
小李完成签到,获得积分10
4秒前
4秒前
研友_Z1eDgZ完成签到,获得积分10
4秒前
5秒前
Whim完成签到,获得积分0
5秒前
李健的小迷弟应助yiw采纳,获得10
5秒前
科研通AI5应助程雯慧采纳,获得10
5秒前
5秒前
5秒前
游游游完成签到,获得积分10
6秒前
奋斗机器猫完成签到 ,获得积分10
6秒前
所所应助君齐采纳,获得10
6秒前
赵培培发布了新的文献求助20
7秒前
zhangzikai发布了新的文献求助30
7秒前
7秒前
吴千雨完成签到,获得积分10
7秒前
科研通AI5应助aoyangxixi采纳,获得10
7秒前
动听锦程发布了新的文献求助30
7秒前
草莓奶冻发布了新的文献求助10
7秒前
lxiaok完成签到,获得积分10
8秒前
红叶发布了新的文献求助10
8秒前
丘比特应助000采纳,获得30
8秒前
冷静绿旋关注了科研通微信公众号
9秒前
凡仔发布了新的文献求助10
9秒前
9秒前
10秒前
hey喂狗发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
学术趴菜完成签到,获得积分10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785297
求助须知:如何正确求助?哪些是违规求助? 3330886
关于积分的说明 10248776
捐赠科研通 3046307
什么是DOI,文献DOI怎么找? 1671979
邀请新用户注册赠送积分活动 800924
科研通“疑难数据库(出版商)”最低求助积分说明 759881