CNN-TransNet: A Hybrid CNN-Transformer Network With Differential Feature Enhancement for Cloud Detection

计算机科学 卷积神经网络 云计算 变压器 人工智能 编码器 深度学习 特征提取 模式识别(心理学) 物理 量子力学 电压 操作系统
作者
Nan Ma,Lin Sun,Yawen He,Chenghu Zhou,Chuanxiang Dong
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:13
标识
DOI:10.1109/lgrs.2023.3288742
摘要

Thin clouds detection and the difficulty in distinguishing between clouds and bright surface features have consistently presented challenges in optical remote sensing cloud detection tasks. Convolutional neural networks (CNNs) have made significant progress, however, CNNs perform weakly in capturing global information interactions due to the inherent limitation of network structure. To address these issues, we propose a hybrid CNN-Transformer network with differential feature enhancement (DFE) for cloud detection (CNN-TransNet). CNN-TransNet adopts a dual-branch encoder consisting of CNN-Transformer module and DFE module. CNN-TransNet combines the strengths of both Transformer and CNN to enhance finer details and build long-range dependencies. CNN is considered as a high-resolution feature extractor for capturing low-level features. The transformer module encodes image sequences by patch embedding to extract high-level features and relationships. DFE branch utilizes differential features and attention mechanism to further obtain effective information for distinguishing between clouds and non-clouds. The decoder upsamples features of the encoder and concatenates multiscale features from the CNN layers. Experimental results demonstrate that the proposed method achieves excellent performance on Landsat-8 and Sentinel-2 images, with a high cloud pixel precision of 92.94% and 93.04%. Moreover, it effectively reduces thin cloud omissions and the misclassifications of bright surface features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr.完成签到,获得积分10
刚刚
饭后瞌睡完成签到,获得积分10
刚刚
超帅鸭子发布了新的文献求助10
1秒前
彭于晏应助DDda采纳,获得10
1秒前
1秒前
汶溢完成签到,获得积分10
1秒前
1秒前
幸福水儿发布了新的文献求助10
2秒前
jyh完成签到,获得积分10
2秒前
2秒前
SciGPT应助牛马自己push采纳,获得10
2秒前
3秒前
3秒前
冰魂应助秋作采纳,获得20
4秒前
糕糕发布了新的文献求助10
4秒前
4秒前
彭于晏应助njufeng采纳,获得10
5秒前
5秒前
科目三应助All采纳,获得10
5秒前
5秒前
短巷发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
Singularity应助Kong采纳,获得10
7秒前
meng发布了新的文献求助10
8秒前
聪明汉堡发布了新的文献求助10
8秒前
科研通AI5应助小肥吴采纳,获得10
9秒前
Singularity给Lelym的求助进行了留言
10秒前
10秒前
Crystal发布了新的文献求助10
10秒前
火星上以柳完成签到,获得积分10
10秒前
zp完成签到,获得积分10
10秒前
圆圆发布了新的文献求助10
10秒前
芋泥桃桃完成签到,获得积分10
10秒前
11秒前
酷波er应助一期一采纳,获得10
11秒前
zuo完成签到,获得积分10
11秒前
罗氏集团完成签到,获得积分10
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805783
求助须知:如何正确求助?哪些是违规求助? 3350709
关于积分的说明 10350220
捐赠科研通 3066573
什么是DOI,文献DOI怎么找? 1683863
邀请新用户注册赠送积分活动 809190
科研通“疑难数据库(出版商)”最低求助积分说明 765407