Real-Time Epileptic Seizure Prediction Method With Spatio-Temporal Information Transfer Learning

计算机科学 癫痫发作 人工智能 癫痫 学习迁移 脑电图 机器学习 模式识别(心理学) 神经科学 心理学
作者
Kunying Meng,Dan Wang,Donghui Zhang,Kunlin Guo,Kai Lü,Junfeng Lu,Renping Yu,Lipeng Zhang,Yuxia Hu,Rui Zhang,Mingming Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/jbhi.2024.3509959
摘要

The accurate prediction of epileptic seizures is a significant challenge in the field of epilepsy. Despite numerous studies devoted to improving the prediction accuracy, there are still some difficulties in the application of current methods in clinical practice, such as high computational cost, poor real-time performance, and over-reliance on labeled data. To address these issues, a real-time seizure prediction method with spatio-temporal information transfer learning (RTSPM-STITL) has been proposed in this study. In the RTSPM-STITL method, the human brain is regarded as a time-varying high-dimensional neurodynamic system, in which epileptic seizures are viewed as state transitions caused by time-varying system parameters. Specifically, the spatio-temporal information transfer (STIT) model is firstly constructed by the recurrent neural network (RNN) and trained by the Force Learning (a realtime learning mechanism). Then the trained STIT model is utilized to transform the high-dimensional neurodynamic system data into low-dimensional time series to capture the dynamic features of epileptic seizures. Also, the critical slowing down effect (CSD) of the dynamic features of epileptic seizures is utilized to detect seizure warning signals. The experimental results demonstrate that the proposed method can achieve higher accuracy and sensitivity without labeled data on both the CHB-MIT and Siena scalp EEG databases. Especially, the parameters of the STIT model can be updated in real-time based on patient data, without iterative training. More importantly, the STIT model can maintain high sensitivity and accuracy with only 48400 parameters, which is reduced by more than 91% compared with contrast models in this experiment. Therefore, the proposed method can significantly reduce the computational cost and accurately predict epileptic seizures, as well as with high real-time, practicality, applicability, and interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘一帆完成签到 ,获得积分20
1秒前
ti发布了新的文献求助10
1秒前
Harden完成签到,获得积分10
1秒前
烟花应助Wang采纳,获得10
2秒前
干大事的小喽啰完成签到,获得积分10
3秒前
3秒前
lj发布了新的文献求助10
3秒前
3秒前
田様应助晚意采纳,获得10
4秒前
烟花应助NMSL采纳,获得10
4秒前
5秒前
5秒前
7秒前
7秒前
高大的小蕊完成签到,获得积分10
7秒前
7秒前
song完成签到 ,获得积分10
8秒前
8秒前
醒了没醒醒完成签到 ,获得积分10
8秒前
沈才佳完成签到 ,获得积分10
9秒前
9秒前
善学以致用应助lingyu采纳,获得10
10秒前
10秒前
shining发布了新的文献求助30
10秒前
大个应助抽刀断水采纳,获得10
10秒前
11秒前
共享精神应助沈格采纳,获得10
11秒前
11秒前
小布发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
127完成签到,获得积分10
13秒前
13秒前
YY发布了新的文献求助10
13秒前
科研通AI6应助von采纳,获得10
13秒前
星辰大海应助xanderxue采纳,获得10
13秒前
14秒前
15秒前
徐枘发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532287
求助须知:如何正确求助?哪些是违规求助? 4621035
关于积分的说明 14576445
捐赠科研通 4560926
什么是DOI,文献DOI怎么找? 2498991
邀请新用户注册赠送积分活动 1478963
关于科研通互助平台的介绍 1450218