Temporal-Incremental Learning for Android Malware Detection

计算机科学 Android恶意软件 恶意软件 Android(操作系统) 恶意软件分析 计算机安全 人工智能 操作系统
作者
Tiezhu Sun,Nadia Daoudi,Weiguo Pian,Kisub Kim,Kevin Allix,Tegawendé F. Bissyande,Jacques Klein
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
标识
DOI:10.1145/3702990
摘要

Malware classification is a specific and refined task within the broader malware detection problem. Effective classification aids in understanding attack techniques and developing robust defenses, ensuring application security and timely mitigation of software vulnerabilities. The dynamic nature of malware demands adaptive classification techniques that can handle the continuous emergence of new families. Traditionally, this is done by retraining models on all historical samples, which requires significant resources in terms of time and storage. An alternative approach is Class-Incremental Learning (CIL), which focuses on progressively learning new classes (malware families) while preserving knowledge from previous training steps. However, CIL assumes that each class appears only once in training and is not revisited, an assumption that does not hold for malware families, which often persist across multiple time intervals. This leads to shifts in the data distribution for the same family over time, a challenge that is not addressed by traditional CIL methods. We formulate this problem as Temporal-Incremental Malware Learning (TIML), which adapts to these shifts and effectively classifies new variants. To support this, we organize the MalNet dataset, consisting of over a million entries of Android malware data collected over a decade, in chronological order. We first adapt state-of-the-art CIL approaches to meet TIML's requirements, serving as baseline methods. Then, we propose a novel multimodal TIML approach that leverages multiple malware modalities for improved performance. Extensive evaluations show that our TIML approaches outperform traditional CIL methods and demonstrate the feasibility of periodically updating malware classifiers at a low cost. This process is efficient and requires minimal storage and computational resources, with only a slight dip in performance compared to full retraining with historical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巧克力张张包完成签到,获得积分10
刚刚
wansida完成签到,获得积分10
刚刚
元煜祺完成签到,获得积分10
刚刚
赘婿应助heli采纳,获得150
刚刚
1秒前
tdtk完成签到,获得积分10
1秒前
冷眼观潮发布了新的文献求助10
2秒前
xiaoxiaoliang完成签到,获得积分10
3秒前
马儿饿了要吃草完成签到,获得积分10
3秒前
user123完成签到,获得积分10
3秒前
幽默的南珍完成签到 ,获得积分10
4秒前
liuyq0501完成签到,获得积分0
5秒前
Sept完成签到,获得积分10
5秒前
我wwww发布了新的文献求助10
5秒前
nini完成签到,获得积分10
6秒前
刘小九完成签到,获得积分10
6秒前
莫愁完成签到 ,获得积分10
7秒前
一颗红葡萄完成签到 ,获得积分10
7秒前
山丘完成签到,获得积分10
8秒前
cookie完成签到,获得积分10
8秒前
亦玉完成签到,获得积分10
10秒前
传奇3应助火星上夜云采纳,获得10
10秒前
Ayu完成签到,获得积分10
11秒前
舒适小凝完成签到 ,获得积分10
11秒前
鹏gg完成签到,获得积分10
11秒前
zhou完成签到,获得积分10
12秒前
wwl完成签到,获得积分10
12秒前
欣喜豌豆完成签到,获得积分10
12秒前
asdxsweef完成签到,获得积分10
12秒前
yoozii完成签到,获得积分10
12秒前
丰富的大地完成签到,获得积分10
13秒前
平淡访冬完成签到 ,获得积分10
13秒前
KKKK完成签到,获得积分10
13秒前
Epiphany完成签到,获得积分10
13秒前
amber完成签到,获得积分10
14秒前
Lillian恋完成签到,获得积分10
14秒前
14秒前
Singularity完成签到,获得积分0
15秒前
lilia完成签到,获得积分10
16秒前
刘攀旺完成签到,获得积分10
17秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
A Student's Guide to Maxwell's Equations 200
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827474
求助须知:如何正确求助?哪些是违规求助? 3369741
关于积分的说明 10457440
捐赠科研通 3089439
什么是DOI,文献DOI怎么找? 1699861
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263