MutualDTA: An Interpretable Drug–Target Affinity Prediction Model Leveraging Pretrained Models and Mutual Attention

药物靶点 计算机科学 人工智能 机器学习 药物发现 生物 生物信息学 药理学
作者
Yongna Yuan,Siming Chen,Rizhen Hu,Xin Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01893
摘要

Efficient and accurate drug-target affinity (DTA) prediction can significantly accelerate the drug development process. Recently, deep learning models have been widely applied to DTA prediction and have achieved notable success. However, existing methods often encounter several common issues: first, the data representations lack sufficient information; second, the extracted features are not comprehensive; and third, most methods lack interpretability when modeling drug-target binding. To overcome the above-mentioned problems, we propose an interpretable deep learning model called MutualDTA for predicting DTA. MutualDTA leverages the power of pretrained models to obtain accurate representations of drugs and targets. It also employs well-designed modules to extract hidden features from these representations. Furthermore, the interpretability of MutualDTA is realized by the Mutual-Attention module, which (i) establishes relationships between drugs and proteins from the perspective of intermolecular interactions between drug atoms and protein amino acid residues and (ii) allows MutualDTA to capture the binding sites based on attention scores. The test results on two benchmark data sets show that MutualDTA achieves the best performance compared to the 12 state-of-the-art models. Attention visualization experiments show that MutualDTA can capture partial interaction sites, which not only helps drug developers reduce the search space for binding sites, but also demonstrates the interpretability of MutualDTA. Finally, the trained MutualDTA is applied to screen high-affinity drug screens targeting Alzheimer's disease (AD)-related proteins, and the screened drugs are partially present in the anti-AD drug library. These results demonstrate the reliability of MutualDTA in drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李大宝发布了新的文献求助10
1秒前
1秒前
幸运星发布了新的文献求助10
3秒前
CC发布了新的文献求助30
3秒前
wwf完成签到,获得积分10
6秒前
6秒前
人间枝头发布了新的文献求助10
7秒前
Dante应助copy采纳,获得10
8秒前
cugwzr发布了新的文献求助10
9秒前
文右三发布了新的文献求助10
11秒前
冷添完成签到,获得积分10
13秒前
晨心发布了新的文献求助10
13秒前
科研通AI2S应助端庄的冰之采纳,获得10
14秒前
MrSong完成签到,获得积分10
14秒前
我是老大应助一点通采纳,获得10
15秒前
星流xx完成签到 ,获得积分10
17秒前
俭朴新之完成签到 ,获得积分10
23秒前
我是老大应助勤劳涵山采纳,获得10
24秒前
桃博完成签到,获得积分10
25秒前
晨心完成签到,获得积分10
29秒前
李大宝完成签到,获得积分20
30秒前
yang应助科研通管家采纳,获得10
31秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
31秒前
yang应助科研通管家采纳,获得10
31秒前
31秒前
天天快乐应助科研通管家采纳,获得30
31秒前
Owen应助科研通管家采纳,获得10
31秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
Owen应助科研通管家采纳,获得30
32秒前
32秒前
32秒前
32秒前
调皮的天真完成签到 ,获得积分10
32秒前
英俊的铭应助文右三采纳,获得10
33秒前
深情安青应助asd采纳,获得50
34秒前
Tracy.完成签到,获得积分10
36秒前
打打应助Sxq采纳,获得10
37秒前
慕青应助青行采纳,获得10
37秒前
深情安青应助文天采纳,获得10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782342
求助须知:如何正确求助?哪些是违规求助? 3327852
关于积分的说明 10233274
捐赠科研通 3042733
什么是DOI,文献DOI怎么找? 1670153
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758876