MutualDTA: An Interpretable Drug–Target Affinity Prediction Model Leveraging Pretrained Models and Mutual Attention

药物靶点 计算机科学 人工智能 机器学习 药物发现 生物 生物信息学 药理学
作者
Yongna Yuan,Siming Chen,Rizhen Hu,Xin Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jcim.4c01893
摘要

Efficient and accurate drug-target affinity (DTA) prediction can significantly accelerate the drug development process. Recently, deep learning models have been widely applied to DTA prediction and have achieved notable success. However, existing methods often encounter several common issues: first, the data representations lack sufficient information; second, the extracted features are not comprehensive; and third, most methods lack interpretability when modeling drug-target binding. To overcome the above-mentioned problems, we propose an interpretable deep learning model called MutualDTA for predicting DTA. MutualDTA leverages the power of pretrained models to obtain accurate representations of drugs and targets. It also employs well-designed modules to extract hidden features from these representations. Furthermore, the interpretability of MutualDTA is realized by the Mutual-Attention module, which (i) establishes relationships between drugs and proteins from the perspective of intermolecular interactions between drug atoms and protein amino acid residues and (ii) allows MutualDTA to capture the binding sites based on attention scores. The test results on two benchmark data sets show that MutualDTA achieves the best performance compared to the 12 state-of-the-art models. Attention visualization experiments show that MutualDTA can capture partial interaction sites, which not only helps drug developers reduce the search space for binding sites, but also demonstrates the interpretability of MutualDTA. Finally, the trained MutualDTA is applied to screen high-affinity drug screens targeting Alzheimer's disease (AD)-related proteins, and the screened drugs are partially present in the anti-AD drug library. These results demonstrate the reliability of MutualDTA in drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛仔发布了新的文献求助10
1秒前
所所应助思维隋采纳,获得10
1秒前
友好语风完成签到,获得积分10
3秒前
上官若男应助BJzeng采纳,获得10
3秒前
3秒前
无限的含羞草完成签到,获得积分10
5秒前
8秒前
波波发布了新的文献求助10
8秒前
十二完成签到 ,获得积分10
10秒前
思维隋发布了新的文献求助10
12秒前
lalali完成签到 ,获得积分10
16秒前
benzene完成签到 ,获得积分10
17秒前
争当科研巨匠完成签到,获得积分10
22秒前
26秒前
28秒前
步步高完成签到,获得积分10
28秒前
缺粥完成签到 ,获得积分10
30秒前
她的城完成签到,获得积分0
31秒前
左白易发布了新的文献求助10
31秒前
米博士完成签到,获得积分10
34秒前
欢喜板凳完成签到 ,获得积分10
34秒前
西宁完成签到,获得积分10
34秒前
蔺天宇完成签到,获得积分10
35秒前
穿山的百足公主完成签到 ,获得积分10
36秒前
蔡从安发布了新的文献求助10
36秒前
ri_290完成签到,获得积分10
37秒前
laber完成签到,获得积分0
38秒前
科研通AI6应助左白易采纳,获得10
39秒前
浅浅完成签到,获得积分10
41秒前
fomo完成签到,获得积分10
45秒前
千暮完成签到,获得积分10
48秒前
帅气的藏鸟完成签到,获得积分10
48秒前
49秒前
49秒前
49秒前
49秒前
ZW完成签到 ,获得积分10
51秒前
serenity711完成签到 ,获得积分10
52秒前
不秃燃的小老弟完成签到 ,获得积分10
53秒前
八八九九九1完成签到,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4765336
求助须知:如何正确求助?哪些是违规求助? 4103590
关于积分的说明 12694952
捐赠科研通 3820927
什么是DOI,文献DOI怎么找? 2108937
邀请新用户注册赠送积分活动 1133464
关于科研通互助平台的介绍 1013860