材料科学
介孔材料
微型多孔材料
三元运算
沸石咪唑盐骨架
碳纤维
碳化
化学工程
石墨烯
纳米技术
咪唑酯
超级电容器
多孔性
壳体(结构)
电容
吸附
金属有机骨架
扫描电子显微镜
催化作用
复合材料
电极
化学
有机化学
复合数
工程类
物理化学
计算机科学
程序设计语言
作者
Jacob Earnshaw,Aditya Ashok,Kwang Keat Leong,Jeonghun Kim,Minjun Kim,Yusuke Yamauchi
出处
期刊:Small
[Wiley]
日期:2024-12-29
卷期号:21 (4)
被引量:5
标识
DOI:10.1002/smll.202406174
摘要
Abstract In this work, a unique 2D hollow turtle shell‐like mesoporous carbon (HTMC) synthesized via a ternary heterostructuring strategy to alleviate the restacking tendency of 2D materials is presented. The ternary 2D heterostructuring is achieved via an in situ growth of zeolitic imidazolate framework‐8 (ZIF‐8) on graphene oxide (GO) and a subsequent mesostructured polydopamine (mPDA) coating to obtain ternary heterostructured GO@ZIF‐8@mPDA, which is then converted to the hierarchically porous HTMC having macro‐, meso‐, and micropores via direct carbonization. Additionally, 2D turtle shell‐like microporous carbon (TMC) and 2D mesoporous carbon (MPC) derived from binary heterostructured GO@ZIF‐8 and GO@mPDA, respectively, are synthesized to investigate the porosity effect on alleviating the loss of accessible surface area of restacked 2D carbons. Among them, HTMC demonstrates superior structural advantages for alleviating the negative effects of restacking in 2D materials, exhibiting by far the highest specific capacitance ( C sp ) across all scan rates (93.7 F g −1 at 500 mV s −1 to 334.47 F g −1 at 1 mV s −1 ) in 1 M H 2 SO 4 . Furthermore, HTMC demonstrates outstanding rate capability while maintaining the greatest charge storage capacity over all scan rates.
科研通智能强力驱动
Strongly Powered by AbleSci AI