人工智能
计算机科学
医学影像学
计算机视觉
扩散
图像(数学)
模式识别(心理学)
物理
热力学
作者
Yijun Yang,Huazhu Fu,Angelica I. Avilés-Rivero,Zhaohu Xing,Lei Zhu
标识
DOI:10.1109/tmi.2025.3530399
摘要
Recently, Denoising Diffusion Models have achieved outstanding success in generative image modeling and attracted significant attention in the computer vision community. Although a substantial amount of diffusion-based research has focused on generative tasks, few studies apply diffusion models to medical diagnosis. In this paper, we propose a diffusion-based network (named DiffMIC-v2) to address general medical image classification by eliminating unexpected noise and perturbations in image representations. To achieve this goal, we first devise an improved dual-conditional guidance strategy that conditions each diffusion step with multiple granularities to enhance step-wise regional attention. Furthermore, we design a novel Heterologous diffusion process that achieves efficient visual representation learning in the latent space. We evaluate the effectiveness of our DiffMIC-v2 on four medical classification tasks with different image modalities, including thoracic diseases classification on chest X-ray, placental maturity grading on ultrasound images, skin lesion classification using dermatoscopic images, and diabetic retinopathy grading using fundus images. Experimental results demonstrate that our DiffMIC-v2 outperforms state-of- the-art methods by a significant margin, which indicates the universality and effectiveness of the proposed model on multi-class and multi-label classification tasks. DiffMIC-v2 can use fewer iterations than our previous DiffMIC to obtain accurate estimations, and also achieves greater runtime efficiency with superior results. The code will be publicly available at https://github.com/scott-yjyang/DiffMICv2.
科研通智能强力驱动
Strongly Powered by AbleSci AI