亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Making Sense of Big Data in Intelligent Transportation Systems: Current Trends, Challenges and Future Directions

计算机科学 大数据 电流(流体) 数据科学 智能交通系统 感应(电子) 数据挖掘 运输工程 电气工程 工程类
作者
Mian Ahmad Jan,Muhammad Adil,Bouziane Brik,Saad Harous,Sohail Abbas
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
被引量:3
标识
DOI:10.1145/3716371
摘要

Intelligent Transportation Systems (ITS) generate massive amounts of Big Data through both sensory and non-sensory platforms. The data support batch processing as well as stream processing, which are essential for reliable operations on the roads and connected vehicles in ITS. Despite the immense potential of Big Data intelligence in ITS, autonomous vehicles are largely confined to testing and trial phases. The research community is working tirelessly to improve the reliability of ITS by designing new protocols, standards and connectivity paradigms. In the recent past, several surveys have been conducted that focus on Big Data Intelligence for ITS, yet none of them have comprehensively addressed the fundamental challenges hindering the widespread adoption of autonomous vehicles on the roads. Our survey aims to help readers better understand the technological advancements by delving deep into Big Data architecture, focusing on data acquisition, data storage and data visualization. We reviewed sensory and non-sensory platforms for data acquisition, data storage repositories for archival and retrieval of large datasets, and data visualization for presenting the processed data in an interactive and comprehensible format. To this end, we discussed the current research progress by comprehensively covering the literature and highlighting challenges that urgently require the attention of research community. Based on the concluding remarks, we argued that these challenges hinder the widespread presence of autonomous vehicles on the roads. Understanding these challenges is important for a more informed discussion on the future of self-driven technology. Moreover, we acknowledge that these challenges not only affect individual layers but also impact the functionality of subsequent layers. Finally, we outline our future work that explores how resolving these challenges could enable the realization of innovations such as smart charging systems on the roads and data centers on wheels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昭昭完成签到,获得积分10
5秒前
6秒前
Magali发布了新的文献求助150
8秒前
9秒前
昭昭发布了新的文献求助10
10秒前
16秒前
16秒前
爆米花应助昭昭采纳,获得10
17秒前
猫抓板发布了新的文献求助10
21秒前
共享精神应助猫抓板采纳,获得10
36秒前
48秒前
猫抓板发布了新的文献求助10
52秒前
Qing完成签到 ,获得积分10
1分钟前
JamesPei应助猫抓板采纳,获得10
1分钟前
AixLeft完成签到 ,获得积分10
1分钟前
1分钟前
猫抓板发布了新的文献求助10
1分钟前
把饭拼好给你完成签到 ,获得积分10
2分钟前
善学以致用应助猫抓板采纳,获得10
2分钟前
2分钟前
许晴完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
猫抓板发布了新的文献求助10
3分钟前
孤独又灿烂的夜猫子完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
SciGPT应助猫抓板采纳,获得10
3分钟前
3分钟前
3分钟前
猫抓板发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
猫抓板发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671228
求助须知:如何正确求助?哪些是违规求助? 4912699
关于积分的说明 15134266
捐赠科研通 4830020
什么是DOI,文献DOI怎么找? 2586614
邀请新用户注册赠送积分活动 1540279
关于科研通互助平台的介绍 1498455