材料科学
光伏
水溶液
硒
离子
化学物理
纳米技术
动力学(音乐)
工程物理
光电子学
化学工程
光伏系统
物理化学
电气工程
物理
冶金
工程类
声学
量子力学
化学
作者
Gaoyang Li,Chenlong Gao,Shuwei Sheng,Chong-Fei Ruan,Junwei Chen,Zhiheng Xu,Rongfeng Tang,Chong Chen,Yan Zhang,Tao Chen,Jun Xu
标识
DOI:10.1002/adfm.202512587
摘要
Abstract Antimony selenosulfide (Sb₂(S,Se)₃) is a promising earth‐abundant photovoltaic material owing to its excellent optical and electrical properties. Currently, solution‐processed Sb₂(S,Se)₃ photovoltaics face a critical selenium paradox: uncontrolled gradient formation induces band misalignment while creating sulfur vacancies ( V S ) and antimony antisites (Sb S/Se ). Here, an ambient aqueous selenide ion treatment (ASIT) acting as atomic‐scale “ionic scalpel” is pioneered that surgically reconstructs selenium distribution. Through room‐temperature ionic diffusion, this liquid‐phase ion engineering achieves dual breakthroughs: 1) Gradient reversal via surface and bulk selenium enrichment flattening valence band offset from 0.12 to 0.03 eV and establishing ideal Type‐II band alignment, 2) Autogenous deep‐level defects healing via Se−V S /Sb S bond reconfiguration. Significantly, time‐resolved photoluminescence (TRPL) characterization unveils, for the first time, the ultrafast charge‐transfer dynamics at the heterointerface of CdS/Sb₂(S,Se)₃ films fabricated via the ASIT strategy. Ultimately, the resultant Sb₂(S,Se)₃ solar cell shatters performance ceiling with a 10.38% efficiency and record open‐circuit voltage of 0.694 V, showing 57% carrier lifetime enhancement. The water‐based process compatibility with roll‐to‐roll manufacturing positions ASIT as a game‐changer for scalable production of gradient‐engineered absorbers beyond antimony‐based systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI