Unsupervised contrastive learning state evaluation framework for early abnormal bearings

计算机科学 人工智能 国家(计算机科学) 自然语言处理 无监督学习 机器学习 算法
作者
K. Yin,Chunjun Chen,Lu Yang,Yaowen Zhang,Fengyu Ou
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217251350129
摘要

Rotational machinery is indispensable in various equipment, making the early detection of its potential malfunctions a crucial area for research. Although data-driven methods show promise in anomaly detection, their practicality is hindered by the scarcity of abnormal data, since machinery usually operates normally and failures are rare and unpredictable. Unsupervised contrastive learning enables early anomaly detection without relying on abnormal samples, offering a promising solution. Typically, it generates positive pairs via data augmentation and considers all other samples as negative pairs. However, these augmentation strategies may be inappropriate for early anomaly detection, as mechanical faults are predominantly reflected in frequency-domain characteristics. To address these challenges, this article proposes an unsupervised anomaly detection contrastive learning (ADCL) state evaluation framework for bearing early anomaly detection, which employs two proxies for the clustering of representation vectors. Specifically, we propose a lightweight separable self-attention for the construction of the autoencoder. Then, pseudo-abnormal data are generated by using the fault feature injection methods. The soft contrastive learning loss takes the anchor as the clustering target for normal samples and simultaneously optimizes the hypersphere center and the decision boundary, the latter of which is learned based on the contrast between normal and pseudo-abnormal samples. Finally, the cosine distance of the latent representation from the hypersphere centroid is utilized to assess the state of the target object, thereby enhancing sensitivity towards abnormal changes in feature distribution. Experimental results on two bearing datasets show the effectiveness of the proposed ADCL framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaowei发布了新的文献求助10
1秒前
sahjdkah发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
WHsE完成签到 ,获得积分10
2秒前
sahjdkah完成签到,获得积分10
6秒前
绝望核弹完成签到 ,获得积分10
6秒前
7秒前
潇洒的念柏完成签到,获得积分20
8秒前
科目三应助宁地啊采纳,获得10
9秒前
希望天下0贩的0应助zhaowei采纳,获得10
9秒前
爱吃冻梨发布了新的文献求助20
12秒前
12秒前
小许会更好完成签到,获得积分10
14秒前
liaokilo发布了新的文献求助50
14秒前
17秒前
zhaowei完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
皛鱼完成签到,获得积分10
21秒前
江河发布了新的文献求助10
22秒前
陈佳谊完成签到 ,获得积分20
23秒前
小马甲应助11采纳,获得30
24秒前
在水一方应助Xzmmmm采纳,获得10
24秒前
HYYYa应助朱明静采纳,获得10
25秒前
25秒前
26秒前
28秒前
29秒前
29秒前
ding应助崔昕雨采纳,获得10
31秒前
32秒前
32秒前
科研通AI6应助坚定的依丝采纳,获得10
33秒前
待定完成签到,获得积分10
34秒前
罗先生完成签到,获得积分10
34秒前
34秒前
量子星尘发布了新的文献求助10
35秒前
36秒前
待定发布了新的文献求助10
36秒前
星辉的斑斓完成签到 ,获得积分10
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
物理流体力学(第三版)西安交通大学出版社 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4259070
求助须知:如何正确求助?哪些是违规求助? 3791949
关于积分的说明 11894479
捐赠科研通 3439907
什么是DOI,文献DOI怎么找? 1887895
邀请新用户注册赠送积分活动 938681
科研通“疑难数据库(出版商)”最低求助积分说明 844148