Development and Validation of a Machine Learning-Based Risk Prediction Model for Postoperative Delirium in Older Patients with Hip Fracture

布里氏评分 谵妄 医学 逻辑回归 接收机工作特性 随机森林 髋部骨折 机器学习 支持向量机 梯度升压 心理干预 人工智能 内科学 计算机科学 重症监护医学 精神科 骨质疏松症
作者
Weili Zhang,Nan Tang,Jie Song,Mi Kyung Song,Qingqing Su,Xiaojie Fu,Yuan Gao
出处
期刊:The Journals of Gerontology [Oxford University Press]
标识
DOI:10.1093/gerona/glaf200
摘要

Abstract Background Postoperative delirium (POD) is associated with impaired cognitive function, increased morbidity, and mortality. Early identification of high-risk patients is critical for effective intervention. Methods Data from 2,516 older patients with hip fractures treated at the First Medical Center of the Chinese PLA General Hospital were retrospectively collected. Logistic Regression (LR), Random Forest (RF), Classification and Regression Tree (CART), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) were used to construct the prediction models. SHapley Additive exPlanation (SHAP) analysis was performed to visualize the optimal model. External validation was conducted on 176 patients from March 2022 to November 2023 to assess the model's clinical applicability. Results The training dataset included 2,516 older patients, of which 367 (14.59%) developed POD. XGBoost demonstrated the best predictive performance (AUC = 0.92; accuracy = 86.4%; sensitivity = 87.7%; specificity = 85.1%; Brier score = 0.15). SHAP analysis ranked PNI (Prognostic Nutritional Index), ASA (American Society of Anesthesiologists classification), and age as the top three predictors. External validation on 176 patients showed the XGBoost model maintained strong performance (AUC = 0.89; accuracy = 83.0%; sensitivity = 95.8%; specificity = 80.9%; Brier score = 0.15). Conclusions An ML-based model was developed and validated to predict postoperative delirium risk in older patients with hip fracture. These findings may help to develop personalized interventions to provide better treatment plans and optimal resource allocation. The interpretable framework can increase the transparency of the model and facilitate understanding the reliability of the predictive model for the physicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ATTENTION完成签到,获得积分10
1秒前
huilihub完成签到,获得积分10
1秒前
余浅儿发布了新的文献求助10
2秒前
NexusExplorer应助夫子1987采纳,获得10
3秒前
Zhou发布了新的文献求助10
3秒前
lulujiang发布了新的文献求助10
6秒前
Sakura完成签到 ,获得积分10
6秒前
时尚语蓉完成签到,获得积分10
6秒前
lxy完成签到 ,获得积分10
6秒前
xiaoyu发布了新的文献求助10
6秒前
7秒前
彭于晏应助舒服的尔丝采纳,获得10
7秒前
ASIMISMO完成签到,获得积分10
7秒前
8秒前
8秒前
科研通AI6应助柠檬采纳,获得10
8秒前
leopard完成签到,获得积分10
8秒前
张子捷完成签到,获得积分10
10秒前
10秒前
lcd发布了新的文献求助80
11秒前
安静的剑发布了新的文献求助10
11秒前
jianguo发布了新的文献求助10
12秒前
无花果应助甜甜若冰采纳,获得10
13秒前
joxes发布了新的文献求助10
13秒前
14秒前
王亚茹发布了新的文献求助10
14秒前
李健应助嘉宝宝贝贝采纳,获得10
15秒前
15秒前
16秒前
何丽雅发布了新的文献求助10
17秒前
不要长胖发布了新的文献求助10
18秒前
19秒前
暴打小赵发布了新的文献求助10
21秒前
angel完成签到,获得积分10
22秒前
Akim应助哎呀呀采纳,获得10
23秒前
meteor应助joxes采纳,获得10
24秒前
XDF完成签到 ,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397179
求助须知:如何正确求助?哪些是违规求助? 4517412
关于积分的说明 14063874
捐赠科研通 4429328
什么是DOI,文献DOI怎么找? 2432273
邀请新用户注册赠送积分活动 1424816
关于科研通互助平台的介绍 1403865