预印本
不错
数字健康
健康
计算机科学
互联网隐私
数据科学
万维网
医学
医疗保健
政治学
心理干预
护理部
程序设计语言
法学
作者
Shayan Bahadori,Peter Buckle,Tayana Soukup,Saira Ghafur,Patrick Kierkegaard
摘要
The rapid advancement of artificial intelligence (AI)-driven diagnostics and wearable health technologies is transforming health care delivery by enabling real-time health monitoring and early disease detection. These innovations are catalyzing a shift toward personalized medicine, with interventions tailored to individual patient profiles with unprecedented precision. This paper examines the current National Institute for Health and Care Excellence (NICE) evidence standards framework (ESF) for digital health technologies (DHTs) and evaluates the challenges associated with integrating DHTs into existing health and care systems. A comprehensive review of the NICE ESF guidelines was conducted, alongside an evaluation of their applicability to emerging AI and wearable technologies. Key limitations and barriers were identified, with particular focus on the framework's responsiveness to technologies that evolve through machine learning and real-world data integration. Our findings indicate that while the NICE ESF provides a structured approach for evaluating DHTs, it lacks the adaptability required for rapidly evolving innovations. The framework does not sufficiently incorporate real-world evidence or support continuous learning models, which are critical for the safe and effective deployment of AI-based diagnostics and wearables. To remain effective and relevant, the NICE ESF should transition to a dynamic, adaptive model co-designed with industry stakeholders. By embedding real-world evidence-based strategies and promoting transparency, efficiency, and collaborative innovation, the updated framework would better facilitate the integration of AI-driven diagnostics and wearables into health care systems, ultimately enhancing patient outcomes and optimizing health care delivery.
科研通智能强力驱动
Strongly Powered by AbleSci AI