Deep neural network for damage detection in Infante Dom Henrique bridge using multi-sensor data

桥(图论) 人工神经网络 人工智能 计算机科学 模式识别(心理学) 医学 内科学
作者
Ana Fernández-Navamuel,David Pardo,Filipe Magalhães,Diego Zamora-Sánchez,Ángel J. Omella,David García-Sánchez
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241227455
摘要

This paper proposes a data-driven approach to detect damage using monitoring data from the Infante Dom Henrique bridge in Porto. The main contribution of this work lies in exploiting the combination of raw measurements from local (inclinations and stresses) and global (eigenfrequencies) variables in a full-scale structural health monitoring application. We exhaustively analyze and compare the advantages and drawbacks of employing each variable type and explore the potential of combining them. An autoencoder-based deep neural network is employed to properly reconstruct measurements under healthy conditions of the structure, which are influenced by environmental and operational variability. The damage-sensitive feature for outlier detection is the reconstruction error that measures the discrepancy between current and estimated measurements. Three autoencoder architectures are designed according to the input: local variables, global variables, and their combination. To test the performance of the methodology in detecting the presence of damage, we employ a finite element model to calculate the relative change in the structural response induced by damage at four locations. These relative variations between the healthy and damaged responses are employed to affect the experimental testing data, thus producing realistic time-domain damaged measurements. We analyze the receiver operating characteristic curves and investigate the latent feature representation of the data provided by the autoencoder in the presence of damage. Results reveal the existence of synergies between the different variable types, producing almost perfect classifiers throughout the performed tests when combining the two available data sources. When damage occurs far from the instrumented sections, the area under the curve in the combined approach increases [Formula: see text] compared to using local variables only. The classificatoin metrics also demonstrate the enhancement of combining both sources of data in the damage detection task, reaching close to [Formula: see text] precision values for the four considered test damage scenarios. Finally, we also investigate the capability of local variables to localize the damage, demonstrating the potential of including these variables in the damage detection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luka应助penghaha采纳,获得30
1秒前
1秒前
2秒前
4秒前
5秒前
7秒前
pokexuejiao发布了新的文献求助10
8秒前
11秒前
13秒前
思源应助科研通管家采纳,获得10
13秒前
杨甜心发布了新的文献求助10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
t通应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得30
15秒前
大力发布了新的文献求助30
16秒前
20秒前
21秒前
我来试试水完成签到 ,获得积分10
22秒前
22秒前
25秒前
1234发布了新的文献求助10
26秒前
mmyhn应助杨甜心采纳,获得20
29秒前
蒲公英完成签到 ,获得积分10
29秒前
科目三应助Li采纳,获得10
29秒前
Koko发布了新的文献求助10
32秒前
36秒前
36秒前
SCI完成签到,获得积分10
36秒前
研友_VZG7GZ应助[刘小婷]采纳,获得30
37秒前
归尘应助铠甲勇士采纳,获得10
37秒前
liuyi818发布了新的文献求助10
37秒前
月yue完成签到,获得积分10
37秒前
tsntn完成签到,获得积分10
38秒前
JamesPei应助默默忆山采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322741
关于积分的说明 10211312
捐赠科研通 3038069
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098