亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comprehensive Evaluation of 10 Docking Programs on a Diverse Set of Protein–Cyclic Peptide Complexes

自动停靠 对接(动物) 化学 环肽 计算机科学 计算生物学 寻找对接的构象空间 蛋白质结构 生物化学 生物 医学 生物信息学 基因 护理部
作者
Huifeng Zhao,Dejun Jiang,Chao Shen,Jintu Zhang,Xujun Zhang,Xiaorui Wang,Dou Nie,Tingjun Hou,Yu Kang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (6): 2112-2124 被引量:11
标识
DOI:10.1021/acs.jcim.3c01921
摘要

Cyclic peptides have emerged as a highly promising class of therapeutic molecules owing to their favorable pharmacokinetic properties, including stability and permeability. Currently, many clinically approved cyclic peptides are derived from natural products or their derivatives, and the development of molecular docking techniques for cyclic peptide discovery holds great promise for expanding the applications and potential of this class of molecules. Given the availability of numerous docking programs, there is a pressing need for a systematic evaluation of their performance, specifically on protein-cyclic peptide systems. In this study, we constructed an extensive benchmark data set called CPSet, consisting of 493 protein-cyclic peptide complexes. Based on this data set, we conducted a comprehensive evaluation of 10 docking programs, including Rosetta, AutoDock CrankPep, and eight protein-small molecule docking programs (i.e., AutoDock, AudoDock Vina, Glide, GOLD, LeDock, rDock, MOE, and Surflex). The evaluation encompassed the assessment of the sampling power, docking power, and scoring power of these programs. The results revealed that all of the tested protein-small molecule docking programs successfully sampled the binding conformations when using the crystal conformations as the initial structures. Among them, rDock exhibited outstanding performance, achieving a remarkable 94.3% top-100 sampling success rate. However, few programs achieved successful predictions of the binding conformations using tLEaP-generated conformations as the initial structures. Within this scheme, AutoDock CrankPep yielded the highest top-100 sampling success rate of 29.6%. Rosetta's scoring function outperformed the others in selecting optimal conformations, resulting in an impressive top-1 docking success rate of 87.6%. Nevertheless, all the tested scoring functions displayed limited performance in predicting binding affinity, with MOE@Affinity dG exhibiting the highest Pearson's correlation coefficient of 0.378. It is therefore suggested to use an appropriate combination of different docking programs for given tasks in real applications. We expect that this work will offer valuable insights into selecting the appropriate docking programs for protein-cyclic peptide complexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crystal发布了新的文献求助30
30秒前
爆米花应助Crystal采纳,获得10
41秒前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
看不了一点文献应助Nan采纳,获得10
2分钟前
怕黑乌冬面完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Nan发布了新的文献求助10
2分钟前
jader发布了新的文献求助30
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
wss123发布了新的文献求助10
3分钟前
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
wss123完成签到,获得积分10
4分钟前
在水一方应助矢思然采纳,获得10
4分钟前
贪玩的万仇完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
矢思然发布了新的文献求助10
4分钟前
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
swordlee发布了新的文献求助100
6分钟前
6分钟前
顾矜应助会飞的蜗牛采纳,获得10
7分钟前
7分钟前
ECD发布了新的文献求助10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
看不了一点文献应助LIXI采纳,获得10
7分钟前
ECD完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
JUST发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5408008
求助须知:如何正确求助?哪些是违规求助? 4525395
关于积分的说明 14101764
捐赠科研通 4439320
什么是DOI,文献DOI怎么找? 2436707
邀请新用户注册赠送积分活动 1428692
关于科研通互助平台的介绍 1406795