Automatic Classification of Microseismic Events With Similar Features and Noise Interference Using RSREL-Stacking

微震 堆积 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 干扰(通信) 特征(语言学) 事件(粒子物理) 直方图 信号(编程语言) 机器学习 数据挖掘 地质学 地震学 图像(数学) 电信 物理 频道(广播) 语言学 哲学 核磁共振 量子力学 程序设计语言
作者
Zhen Zhang,Yicheng Ye,Guangquan Zhang,Quanjie Zhu,Xiaobing Luo,Jie Fen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-9 被引量:1
标识
DOI:10.1109/tgrs.2023.3324506
摘要

Microseismic events must be classified to obtain effective disaster precursor information. To further improve the accuracy and efficiency of microseismic event classification, and based on the microseismic data of rockburst monitoring, combined with time–frequency analysis theory, the main factors affecting microseismic event classification were analyzed. For the first time, the rectangle histogram of oriented gradient (R-HOG) and stacking technologies were effectively combined to establish a new stacking integrated learning model (RSREL-stacking) for classifying microseismic events. Finally, the classification performances of RSREL-stacking, a deep learning model, and other models were tested. The results showed the following: 1) noisy signal interference and some events that have similar characteristics are the main factors leading to the high misjudgment rate of events; 2) RSREL-stacking can accurately distinguish the spectrum of useful signals from complex noise interference and effectively extract the contour, region, and spatial position feature information of the useful signal spectrum; and 3) through different experiments, it is confirmed that RSREL-stacking effectively combines the advantages of many independent models, can deeply recognize the subtle differences and features of similar events, and provides increased accuracy of event classification. Compared with other methods, RSREL-stacking combines the advantages of efficient and accurate classification of microseismic events, which guarantees quickly obtaining effective disaster information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋时晏应助LJYii采纳,获得200
1秒前
SpringMorning完成签到,获得积分10
2秒前
3秒前
星辰大海应助冷傲的灯泡采纳,获得10
4秒前
ll发布了新的文献求助10
4秒前
小月完成签到,获得积分10
6秒前
John发布了新的文献求助10
8秒前
10秒前
不倦应助睡不醒的喵采纳,获得10
11秒前
科研狗的春天完成签到 ,获得积分10
11秒前
科目三应助cloud采纳,获得10
12秒前
久9完成签到 ,获得积分10
13秒前
jzmupyj发布了新的文献求助10
15秒前
善学以致用应助322小弟采纳,获得10
16秒前
16秒前
17秒前
汉堡包应助SpringMorning采纳,获得10
18秒前
顾矜应助Booty采纳,获得10
19秒前
Frank完成签到,获得积分10
20秒前
菠萝冰棒完成签到,获得积分10
20秒前
21秒前
冷傲的小之完成签到 ,获得积分10
22秒前
Neuro_dan发布了新的文献求助10
23秒前
23秒前
23秒前
酷波er应助John采纳,获得10
23秒前
FashionBoy应助菠萝冰棒采纳,获得10
25秒前
LLL完成签到,获得积分10
25秒前
岳凯完成签到 ,获得积分10
26秒前
322小弟发布了新的文献求助10
27秒前
33秒前
晒太阳的鱼完成签到 ,获得积分10
33秒前
sunshine完成签到 ,获得积分10
35秒前
37秒前
小文cremen发布了新的文献求助150
38秒前
陈瑶完成签到,获得积分10
41秒前
在水一方应助朴实白卉采纳,获得10
44秒前
善良的剑通完成签到,获得积分10
44秒前
kaka完成签到 ,获得积分10
48秒前
赵纤完成签到,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215380
捐赠科研通 3038867
什么是DOI,文献DOI怎么找? 1667677
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339