FSDF: A high-performance fire detection framework

计算机科学 人工智能 火灾探测 分割 稳健性(进化) 色调 深度学习 模式识别(心理学) 支持向量机 机器学习 生物化学 化学 物理 基因 热力学
作者
Hongyang Zhao,Jin Jing,Yi Liu,Yanan Guo,Yi Shen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121665-121665 被引量:28
标识
DOI:10.1016/j.eswa.2023.121665
摘要

Fire detection is crucial in the protection of human life and property. Traditional methodologies and deep learning techniques have been extensively employed in this area, yet they often fall short due to the considerable variability in the shape, size, and intensity of flames. Conventional approaches lean on predefined fire characteristics, failing to adapt sufficiently across a broad spectrum of fire conditions. Simultaneously, deep learning techniques may struggle with managing diverse and unusual flame attributes. In response to these challenges, we introduce a novel framework that synergizes traditional methods with deep learning techniques—the Fire Segmentation-Detection Framework (FSDF). FSDF enhances flame feature detection by extracting color and texture information from images, utilizing Hue, Saturation, and Value (HSV), and the Complete Local Binary Pattern (CLBP). In addition, we weave YOLOv8 and Vector Quantized Variational Autoencoders (VQ-VAE) into the fabric of our framework to facilitate image segmentation and carry out unsupervised fire detection, respectively. To gauge the accuracy and robustness of our proposed method, we implemented a comprehensive assessment using a dataset constructed from real-world forest and urban fires. Experimental results unequivocally demonstrate the competitive edge of our approach over some baseline methods. For instance, in contrast to YOLOv8, our framework has bolstered precision, recall, and F-score by 19.5%, 1.2%, and 11.7% respectively. Finally, we conducted extensive field tests by deploying a robot with the relevant algorithm in an actual fire scenario, further emphasizing our dedication to real-world application. These experiments underline not only the performance of the method, but also its potential for practical deployment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
刚刚
吖吖吖亚关注了科研通微信公众号
1秒前
anfenju完成签到,获得积分10
1秒前
5秒前
6秒前
6秒前
zjy发布了新的文献求助10
6秒前
楚奇完成签到,获得积分10
7秒前
九日科研ing完成签到,获得积分0
8秒前
8秒前
陈陈发布了新的文献求助20
8秒前
李锐完成签到 ,获得积分10
9秒前
核动力路灯完成签到,获得积分10
9秒前
852应助冷傲的迎荷采纳,获得30
9秒前
昏睡的代桃完成签到,获得积分10
9秒前
srfann发布了新的文献求助10
9秒前
11秒前
12秒前
呵呵呵呵发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
无心的访梦完成签到,获得积分10
14秒前
羊蛋儿发布了新的文献求助10
14秒前
15秒前
15秒前
上好佳完成签到,获得积分10
15秒前
一路向南完成签到 ,获得积分10
15秒前
ggg发布了新的文献求助10
16秒前
名字是乱码完成签到,获得积分20
17秒前
18秒前
shanshan发布了新的文献求助10
18秒前
18秒前
20秒前
maizai发布了新的文献求助10
21秒前
22秒前
ggg完成签到,获得积分10
23秒前
儒雅的冷松完成签到,获得积分10
23秒前
23秒前
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842551
求助须知:如何正确求助?哪些是违规求助? 3384645
关于积分的说明 10536396
捐赠科研通 3105179
什么是DOI,文献DOI怎么找? 1710071
邀请新用户注册赠送积分活动 823490
科研通“疑难数据库(出版商)”最低求助积分说明 774110