Improved artificial gorilla troops optimizer with chaotic adaptive parameters - application to the parameter estimation problem of mixed additive and multiplicative random error models

初始化 人口 数学优化 混乱的 计算机科学 非线性系统 算法 局部最优 数学 人工智能 物理 人口学 量子力学 社会学 程序设计语言
作者
Leyang Wang,Shuhao Han,Ming Pang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025203-025203 被引量:6
标识
DOI:10.1088/1361-6501/ad093b
摘要

Abstract For mixed additive and multiplicative random error models (MAM models), due to the complex correlation between the parameters and the model power array, derivative operations will be inevitable in the actual calculation. When the observation equation is in nonlinear form, the operations will be more complicated. The swarm intelligence optimization algorithm (SIO) can effectively solve the derivative problem when estimating the nonlinear model parameters using conventional iterative algorithms. However, for different problems, the conventional SIO cannot effectively balance the ability of global and local behavior, resulting in the algorithm falling into prematureness and failing to output effective parameter information. To address the above problems, the improved artificial gorilla troops optimizer (CAGTO) algorithm with chaotic adaptive behavior is proposed. To address the problem that the population generated by the algorithm using pseudo-random numbers in the initialization population phase has poor traversability in the feasible domain, the chaotic sequence is applied to initialize the population instead of pseudo-random number generation to ensure that the population can traverse the feasible domain as much as possible and improve the global search capability of the algorithm. Adaptive parameters that vary linearly and nonlinearly with the algorithm process are constructed to balance the global search and local search ability, while accelerating the convergence speed. Two CAGTO algorithms with different parameter settings are constructed for different problems, and the experimental results show that both CAGTO algorithms can effectively solve the parameter estimation problem of MAM models with different nonlinear forms of observation equations compared with several other comparative algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助30
刚刚
Aiden112233完成签到,获得积分10
刚刚
糯米糍发布了新的文献求助10
刚刚
刚刚
简默驳回了英姑应助
刚刚
1秒前
1秒前
NexusExplorer应助英勇的新瑶采纳,获得10
1秒前
1秒前
ari发布了新的文献求助10
1秒前
负责难破完成签到,获得积分10
2秒前
Yvon发布了新的文献求助10
2秒前
peipei发布了新的文献求助10
3秒前
3秒前
卓艾完成签到,获得积分10
3秒前
Owen应助wangxin采纳,获得10
3秒前
派大欣发布了新的文献求助10
3秒前
淑儿哥哥完成签到,获得积分10
3秒前
搜集达人应助忠玉采纳,获得10
3秒前
彭于彦祖应助森林采纳,获得20
4秒前
4秒前
NexusExplorer应助南兮采纳,获得10
4秒前
4秒前
5秒前
5秒前
德芙发布了新的文献求助10
5秒前
6秒前
Z2028815291完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
hollow完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
ACSM's guidelines for exercise testing and prescription, 12 ed 500
The Well-Connected Animal 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896345
求助须知:如何正确求助?哪些是违规求助? 3440164
关于积分的说明 10816202
捐赠科研通 3165147
什么是DOI,文献DOI怎么找? 1748573
邀请新用户注册赠送积分活动 844771
科研通“疑难数据库(出版商)”最低求助积分说明 788224