亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Differentiating spinal pathologies by deep learning approach

医学 病态的 放射性武器 神经鞘瘤 放射科 活检 病理
作者
Oz Haim,Ariel Agur,Segev Gabay,Lee Azolai,Itay Shutan,May Chitayat,Michal Katirai,Sapir Sadon,Moran Artzi,Zvi Lidar
出处
期刊:The Spine Journal [Elsevier]
卷期号:24 (2): 297-303 被引量:13
标识
DOI:10.1016/j.spinee.2023.09.019
摘要

BACKGROUND CONTEXT Spinal pathologies are diverse in nature and, excluding trauma and degenerative diseases, includes infectious, neoplastic (either extradural or intradural) and inflammatory conditions. The preoperative diagnosis is made with clinical judgment incorporating lab findings and radiological studies. When the diagnosis is uncertain, a biopsy is almost always mandatory since the treatment is dictated by the type of pathology. This is an invasive, timely and costly process. PURPOSE The aim of this study was to develop a deep learning (DL) algorithm, based on preoperative MRI and post-operative pathological results, to differentiate between leading spinal pathologies. STUDY DESIGN We retrospectively collected and analyzed clinical, radiological, and pathological data of patients who underwent spinal surgery or biopsy for various spinal pathologies between 2008-2022 at a tertiary center. The patients were stratified according to their pathological reports (the threshold for inclusion was set to 25 patients per diagnosis). METHODS Preoperative MRI, clinical data and pathological results were processed by a deep learning model built on the Fast.ai framework on top of the PyTorch environment. RESULTS Two-hundred and thirty-one patients diagnosed with carcinoma (80), infection (57), meningioma (52) or schwannoma (42), were included in our model. The mean overall accuracy was 0.78±0.06 for the validation, and 0.93±0.03 for the test dataset. CONCLUSION DL algorithm for differentiation between the aforementioned spinal pathologies, based solely on clinical MRI, proves as a feasible primary diagnostic modality. Larger studies should be performed to validate and improve this algorithm for clinical use. CLINICAL SIGNIFICANCE This study provides a proof-of-concept for predicting spinal pathologies solely by MRI based DL technology, allowing for a rapid, targeted and cost-effective work-up and subsequent treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
34秒前
55秒前
FashionBoy应助小树同学采纳,获得10
1分钟前
科研通AI2S应助白奕采纳,获得30
1分钟前
1分钟前
小树同学完成签到,获得积分10
1分钟前
1分钟前
小树同学发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
lulumomoxixi完成签到 ,获得积分10
1分钟前
tianfu1899发布了新的文献求助30
2分钟前
2分钟前
qing_li完成签到,获得积分10
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
2分钟前
江姜酱先生完成签到,获得积分10
2分钟前
fabius0351完成签到 ,获得积分10
2分钟前
Mmmmmmm完成签到,获得积分20
3分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
3分钟前
Jasper应助liu采纳,获得10
4分钟前
4分钟前
可爱的函函应助白华苍松采纳,获得10
4分钟前
4分钟前
liu发布了新的文献求助30
5分钟前
5分钟前
5分钟前
5分钟前
大模型应助科研通管家采纳,获得10
5分钟前
5分钟前
Atopos发布了新的文献求助10
5分钟前
liu发布了新的文献求助10
5分钟前
xy完成签到 ,获得积分10
5分钟前
大宝SOD蜜完成签到,获得积分10
5分钟前
jie发布了新的文献求助30
5分钟前
大宝SOD蜜发布了新的文献求助10
5分钟前
CipherSage应助liu采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564946
求助须知:如何正确求助?哪些是违规求助? 4649660
关于积分的说明 14689245
捐赠科研通 4591601
什么是DOI,文献DOI怎么找? 2519292
邀请新用户注册赠送积分活动 1491897
关于科研通互助平台的介绍 1462942