四元数
同步(交流)
控制理论(社会学)
人工神经网络
计算机科学
MATLAB语言
实现(概率)
李雅普诺夫函数
自适应控制
可靠性(半导体)
数学
控制(管理)
人工智能
非线性系统
计算机网络
频道(广播)
统计
物理
几何学
功率(物理)
量子力学
操作系统
作者
Jun Guo,Yanchao Shi,Wei‐Hua Luo,Yanzhao Cheng,Shengye Wang
出处
期刊:Mathematics
[Multidisciplinary Digital Publishing Institute]
日期:2023-08-17
卷期号:11 (16): 3553-3553
被引量:1
摘要
In this paper, the adaptive synchronization problem of quaternion-valued Cohen–Grossberg neural networks (QVCGNNs), with and without known parameters, is investigated. On the basis of constructing an appropriate Lyapunov function, and utilizing parameter identification theory and decomposition methods, two effective adaptive feedback schemes are proposed, to guarantee the realization of global synchronization of CGQVNNs. The control gain of the above schemes can be obtained using the Matlab LMI toolbox. The theoretical results presented in this work enrich the literature exploring the adaptive synchronization problem of quaternion-valued neural networks (QVNNs). Finally, the reliability of the theoretical schemes derived in this work is shown in two interesting numerical examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI