Predicting the onset of diabetes-related complications after a diabetes diagnosis with machine learning algorithms

医学 糖尿病 共病 逻辑回归 糖尿病性视网膜病变 视网膜病变 内科学 心肌梗塞 心力衰竭 疾病 算法 心脏病学 内分泌学 计算机科学
作者
Toni Mora,David Roche,Beatriz Rodríguez-Sánchez
出处
期刊:Diabetes Research and Clinical Practice [Elsevier BV]
卷期号:204: 110910-110910 被引量:14
标识
DOI:10.1016/j.diabres.2023.110910
摘要

Using machine learning algorithms and administrative data, we aimed to predict the risk of being diagnosed with several diabetes-related complications after one-, two- and three-year post-diabetes diagnosis.We used longitudinal data from administrative registers of 610,019 individuals in Catalonia with a diagnosis of diabetes and checked the presence of several complications after diabetes onset from 2013 to 2017: hypertension, renal failure, myocardial infarction, cardiovascular disease, retinopathy, congestive heart failure, cerebrovascular disease, peripheral vascular disease and stroke. Four different machine learning (ML) algorithms (logistic regression (LR), Decision tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGB)) will be used to assess their prediction performance and to evaluate the prediction accuracy of complications changes over the period considered.610,019 people with diabetes were included. After three years since diabetes diagnosis, the area under the curve values ranged from 60% (retinopathy) to 69% (congestive heart failure), whereas accuracy rates varied between 60% (retinopathy) to 75% (hypertension). RF was the most relevant technique for hypertension, myocardial and retinopathy, and LR for the rest of the comorbidities. The Shapley additive explanations values showed that age was associated with an elevated risk for all diabetes-related complications except retinopathy. Gender, other comorbidities, co-payment levels and age were the most relevant factors for comorbidity diagnosis prediction.Our ML models allow for the identification of individuals newly diagnosed with diabetes who are at increased risk of developing diabetes-related complications. The prediction performance varied across complications but within acceptable ranges as prediction tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色觅荷发布了新的文献求助10
刚刚
儒雅凡桃发布了新的文献求助10
3秒前
3秒前
5秒前
材料人发布了新的文献求助10
5秒前
李子发布了新的文献求助10
8秒前
9秒前
11秒前
珈小羽完成签到,获得积分10
14秒前
李子完成签到,获得积分10
15秒前
茶艺如何完成签到,获得积分20
16秒前
17秒前
小马甲应助路漫漫采纳,获得10
17秒前
19秒前
19秒前
冰魂应助鳗鱼如松采纳,获得10
20秒前
bububusbu完成签到,获得积分10
21秒前
余佘完成签到,获得积分20
21秒前
机灵柚子应助DDS采纳,获得10
22秒前
默然回首发布了新的文献求助10
22秒前
犇骉发布了新的文献求助10
23秒前
可爱若灵发布了新的文献求助30
25秒前
你能行完成签到,获得积分10
25秒前
田様应助朔朔朔朔子采纳,获得10
26秒前
搜集达人应助柔弱熊猫采纳,获得10
27秒前
完美世界应助儒雅凡桃采纳,获得10
27秒前
充电宝应助7777777采纳,获得10
28秒前
29秒前
30秒前
35秒前
36秒前
88完成签到,获得积分10
37秒前
dwz发布了新的文献求助10
37秒前
37秒前
38秒前
柔弱熊猫发布了新的文献求助10
39秒前
奋斗小公主完成签到,获得积分10
41秒前
cs完成签到 ,获得积分10
42秒前
稻草人发布了新的文献求助10
42秒前
mir为少发布了新的文献求助10
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800411
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326420
捐赠科研通 3062122
什么是DOI,文献DOI怎么找? 1680875
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572