Assessing urban renewal opportunities by combining 3D building information and geographic big data

大数据 数据科学 地理 地理信息系统 区域科学 计算机科学 地图学 建筑工程 数据挖掘 工程类
作者
Xin Zhao,Nan Xia,Manchun Li
出处
期刊:Geo-spatial Information Science [Taylor & Francis]
卷期号:: 1-17 被引量:2
标识
DOI:10.1080/10095020.2024.2378926
摘要

The assessment of urban renewal (UR) potential aims to prioritize areas for UR, which are essential for sustainable urban revitalization. However, conventional data sources often fall short in encompassing diverse urban characteristics in the evaluation process, such as urban three-dimensional (3D) building information and the intensity of human activities. To address this gap, this study integrated 3D building data and geographic data to create a comprehensive set of 28 indicators spanning four dimensions: natural environmental conditions, land use, socio-economic factors, and building conditions. These indicators take into account vertical dimensions, dynamic aspects, and fine-scale details. Leveraging the existing UR practices as a positive example, we established an UR potential assessment model at street block scale using Presence and Background Learning combined with extreme gradient boosting algorithms (PBLXGBoost). Our findings revealed that the highest accuracy in evaluating industrial UR potential was achieved in Shenzhen (Fpb_avg = 0.80, RMSEavg = 0.21), followed by residential and commercial UR potential assessments. Conversely, other type UR exhibit lower accuracy. Street blocks with significant UR potential are predominantly located in Bao'an, Longgang, and Longhua Districts. Furthermore, employing the SHAP model to elucidate the evaluation results uncovered intricate hierarchical, positive-negative, and overlapping relationships among various factors and different UR types, where geographic big data and 3D building information showed strong correlations. The methodology proposed in this study enables objective and precise assessments of UR potential, offering valuable support for UR practice and sustainable urban development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
printzhao完成签到,获得积分10
1秒前
2秒前
zzh发布了新的文献求助40
2秒前
weige发布了新的文献求助10
3秒前
PU聚氨酯发布了新的文献求助30
4秒前
4秒前
蝶步韶华发布了新的文献求助20
5秒前
小管完成签到,获得积分10
5秒前
小艺发布了新的文献求助10
7秒前
An发布了新的文献求助10
7秒前
香蕉觅云应助AireenBeryl531采纳,获得30
8秒前
情怀应助xxxxxxxxx采纳,获得10
9秒前
搜集达人应助沙骑马采纳,获得10
10秒前
YM发布了新的文献求助30
11秒前
上官若男应助科研动物园采纳,获得10
13秒前
朱珏虹完成签到,获得积分10
15秒前
英姑应助nteicu采纳,获得30
15秒前
xiaoT完成签到,获得积分10
16秒前
18秒前
18秒前
19秒前
19秒前
20秒前
xiuxiu发布了新的文献求助10
22秒前
静水流深发布了新的文献求助10
24秒前
24秒前
24秒前
24秒前
25秒前
25秒前
26秒前
沙骑马完成签到,获得积分10
26秒前
26秒前
AgonyQ发布了新的文献求助10
26秒前
27秒前
27秒前
28秒前
29秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5265390
求助须知:如何正确求助?哪些是违规求助? 4425383
关于积分的说明 13776456
捐赠科研通 4300914
什么是DOI,文献DOI怎么找? 2359976
邀请新用户注册赠送积分活动 1355966
关于科研通互助平台的介绍 1317346