Engineering Shewanella oneidensis‐Carbon Felt Biohybrid Electrode Decorated with Bacterial Cellulose Aerogel‐Electropolymerized Anthraquinone to Boost Energy and Chemicals Production

舍瓦内拉 气凝胶 细菌纤维素 纤维素 蒽醌 材料科学 电极 化学 化学工程 纳米技术 有机化学 细菌 工程类 生物 遗传学 物理化学
作者
Qijing Liu,Wenliang Xu,Qinran Ding,Yan Zhang,Junqi Zhang,Baocai Zhang,Huan Yu,Chao Li,Longhai Dai,Cheng Zhong,Wenyu Lü,ZhanYing Liu,Feng Li,Hao Song
出处
期刊:Advanced Science [Wiley]
卷期号:11 (39): e2407599-e2407599 被引量:13
标识
DOI:10.1002/advs.202407599
摘要

Abstract Interfacial electron transfer between electroactive microorganisms (EAMs) and electrodes underlies a wide range of bio‐electrochemical systems with diverse applications. However, the electron transfer rate at the biotic‐electrode interface remains low due to high transmembrane and cell‐electrode interfacial electron transfer resistance. Herein, a modular engineering strategy is adopted to construct a Shewanella oneidensis ‐carbon felt biohybrid electrode decorated with bacterial cellulose aerogel‐electropolymerized anthraquinone to boost cell‐electrode interfacial electron transfer. First, a heterologous riboflavin synthesis and secretion pathway is constructed to increase flavin‐mediated transmembrane electron transfer. Second, outer membrane c ‐Cyts OmcF is screened and optimized via protein engineering strategy to accelerate contacted‐based transmembrane electron transfer. Third, a S. oneidensis ‐carbon felt biohybrid electrode decorated with bacterial cellulose aerogel and electropolymerized anthraquinone is constructed to boost the interfacial electron transfer. As a result, the internal resistance decreased to 42 Ω, 480.8‐fold lower than that of the wild‐type (WT) S. oneidensis MR‐1. The maximum power density reached 4286.6 ± 202.1 mW m −2 , 72.8‐fold higher than that of WT. Lastly, the engineered biohybrid electrode exhibited superior abilities for bioelectricity harvest, Cr 6+ reduction, and CO 2 reduction. This study showed that enhancing transmembrane and cell‐electrode interfacial electron transfer is a promising way to increase the extracellular electron transfer of EAMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Charety完成签到,获得积分10
刚刚
星辰大海应助Cu_wx采纳,获得10
刚刚
默默的完成签到 ,获得积分10
1秒前
会飞的猪发布了新的文献求助10
1秒前
1秒前
美好斓发布了新的文献求助10
2秒前
2秒前
ABBYTHU18完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
5秒前
张丹兰发布了新的文献求助10
5秒前
Pampers发布了新的文献求助10
5秒前
DrLiu完成签到,获得积分10
6秒前
所所应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得20
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
chenqiumu应助科研通管家采纳,获得30
6秒前
Cleo应助科研通管家采纳,获得10
6秒前
lalala应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
7秒前
Tourist应助科研通管家采纳,获得150
7秒前
xxfsx应助科研通管家采纳,获得30
7秒前
浮游应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
chenqiumu应助科研通管家采纳,获得30
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
orixero应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
Cleo应助科研通管家采纳,获得10
7秒前
尹梦成应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295495
求助须知:如何正确求助?哪些是违规求助? 4445003
关于积分的说明 13835136
捐赠科研通 4329390
什么是DOI,文献DOI怎么找? 2376646
邀请新用户注册赠送积分活动 1371924
关于科研通互助平台的介绍 1337206