蒙特卡罗方法
统计物理学
蒙特卡罗分子模拟
动态蒙特卡罗方法
混合蒙特卡罗
统计物理中的蒙特卡罗方法
蒙特卡罗算法
放松(心理学)
动力学蒙特卡罗方法
采用蒙地卡罗积分法
而量子蒙特卡罗
马尔科夫蒙特卡洛
物理
数学
统计
心理学
社会心理学
作者
Ludovic Berthier,Federico Ghimenti,Frédéric van Wijland
摘要
Monte Carlo simulations are widely employed to measure the physical properties of glass-forming liquids in thermal equilibrium. Combined with local Monte Carlo moves, the Metropolis algorithm can also be used to simulate the relaxation dynamics, thus offering an efficient alternative to molecular dynamics. Monte Carlo simulations are, however, more versatile because carefully designed Monte Carlo algorithms can more efficiently sample the rugged free energy landscape characteristic of glassy systems. After a brief overview of Monte Carlo studies of glass-formers, we define and implement a series of Monte Carlo algorithms in a three-dimensional model of polydisperse hard spheres. We show that the standard local Metropolis algorithm is the slowest and that implementing collective moves or breaking detailed balance enhances the efficiency of the Monte Carlo sampling. We use time correlation functions to provide a microscopic interpretation of these observations. Seventy years after its invention, the Monte Carlo method remains the most efficient and versatile tool to compute low-temperature properties in supercooled liquids.
科研通智能强力驱动
Strongly Powered by AbleSci AI