Optimizing hybrid deep learning models for drug‐target interaction prediction: A comparative analysis of evolutionary algorithms

计算机科学 人工智能 机器学习 进化算法 算法
作者
M. V. Phanikrishna Sharma,Aryan Bhatia,Akhil,Ashit Kumar Dutta,Shtwai Alsubai
出处
期刊:Expert Systems [Wiley]
标识
DOI:10.1111/exsy.13683
摘要

Abstract In the realm of Drug‐Target Interaction (DTI) prediction, this research investigates and contrasts the efficacy of diverse evolutionary algorithms in fine‐tuning a sophisticated hybrid deep learning model. Recognizing the critical role of DTI in drug discovery and repositioning, we tackle the challenges of binary classification by reframing the problem as a regression task. Our focus lies on the Convolution Self‐Attention Network with Attention‐based bidirectional Long Short‐Term Memory Network (CSAN‐BiLSTM‐Att), a hybrid model combining convolutional neural network (CNN) blocks, self‐attention mechanisms, and bidirectional LSTM layers. To optimize this complex model, we employ Differential Evolution (DE), Particle Swarm Optimization (PSO), Memetic Particle Swarm Optimization Algorithm (MPSOA), Fire Hawk Optimization (FHO), and Artificial Hummingbird Algorithm (AHA). Through thorough comparative analysis, we evaluate the performance of these evolutionary algorithms in enhancing the CSAN‐BiLSTM‐Att model's effectiveness. By examining the strengths and weaknesses of each algorithm, our study aims to provide valuable insights into DTI prediction, identifying the most effective evolutionary algorithm for hyperparameter tuning in advanced deep learning models. Notably, Fire‐hawk optimization (FHO) emerges as particularly promising, achieving the highest Concordance Index (C‐index) as 0.974 for KIBA datasets and 0.894 for DAVIS datasets and demonstrating exceptional accuracy in ranking continuous predictions across both the datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sgs完成签到,获得积分10
刚刚
炒鸡小将发布了新的文献求助10
1秒前
nhocbinzuzu发布了新的文献求助10
1秒前
1秒前
2秒前
online1881完成签到,获得积分10
4秒前
lwj007发布了新的文献求助10
6秒前
nhocbinzuzu完成签到,获得积分20
7秒前
liaomr发布了新的文献求助10
7秒前
雨点完成签到,获得积分10
8秒前
赵文若发布了新的文献求助10
9秒前
sci大户发布了新的文献求助10
9秒前
Dream点壹完成签到,获得积分10
10秒前
保持理智完成签到,获得积分10
11秒前
淡然雪枫完成签到,获得积分10
11秒前
炒鸡小将完成签到,获得积分10
11秒前
小雨完成签到,获得积分10
12秒前
lwj007完成签到,获得积分10
13秒前
坚强成风完成签到,获得积分10
13秒前
梦XING完成签到 ,获得积分10
14秒前
JXDYYZK完成签到,获得积分10
14秒前
好好完成签到,获得积分10
14秒前
15秒前
机智的阿振完成签到,获得积分10
15秒前
简简单单完成签到 ,获得积分10
16秒前
18秒前
彪壮的含双完成签到,获得积分10
19秒前
19秒前
周涨杰完成签到 ,获得积分10
20秒前
苗条小土豆完成签到,获得积分10
20秒前
聪慧芷巧发布了新的文献求助10
20秒前
跳脚的虾完成签到 ,获得积分10
22秒前
22秒前
LIGHT完成签到,获得积分10
23秒前
FF完成签到 ,获得积分10
27秒前
仅仅完成签到 ,获得积分10
27秒前
NNUsusan完成签到,获得积分10
28秒前
victhr完成签到,获得积分10
29秒前
jin发布了新的文献求助10
30秒前
aurevoir完成签到,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946218
求助须知:如何正确求助?哪些是违规求助? 3491139
关于积分的说明 11059274
捐赠科研通 3222093
什么是DOI,文献DOI怎么找? 1780863
邀请新用户注册赠送积分活动 865877
科研通“疑难数据库(出版商)”最低求助积分说明 800083