CAD-Mesher: A Convenient, Accurate, Dense Mesh-based Mapping Module in SLAM for Dynamic Environments

计算机辅助设计 同时定位和映射 计算机科学 工程制图 计算机图形学(图像) 人工智能 机器人 工程类 移动机器人
作者
Yanpeng Jia,Fengkui Cao,Ting Wang,Yandong Tang,Shiliang Shao,Lianqing Liu
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2408.05981
摘要

Most LiDAR odometry and SLAM systems construct maps in point clouds, which are discrete and sparse when zoomed in, making them not directly suitable for navigation. Mesh maps represent a dense and continuous map format with low memory consumption, which can approximate complex structures with simple elements, attracting significant attention of researchers in recent years. However, most implementations operate under a static environment assumption. In effect, moving objects cause ghosting, potentially degrading the quality of meshing. To address these issues, we propose a plug-and-play meshing module adapting to dynamic environments, which can easily integrate with various LiDAR odometry to generally improve the pose estimation accuracy of odometry. In our meshing module, a novel two-stage coarse-to-fine dynamic removal method is designed to effectively filter dynamic objects, generating consistent, accurate, and dense mesh maps. To our best know, this is the first mesh construction method with explicit dynamic removal. Additionally, conducive to Gaussian process in mesh construction, sliding window-based keyframe aggregation and adaptive downsampling strategies are used to ensure the uniformity of point cloud. We evaluate the localization and mapping accuracy on five publicly available datasets. Both qualitative and quantitative results demonstrate the superiority of our method compared with the state-of-the-art algorithms. The code and introduction video are publicly available at https://yaepiii.github.io/CAD-Mesher/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZ发布了新的文献求助10
刚刚
爆米花应助花醉折枝采纳,获得10
刚刚
刚刚
素衣发布了新的文献求助10
刚刚
SRsora完成签到,获得积分10
1秒前
1秒前
研友_nqaogn完成签到,获得积分10
1秒前
1秒前
浮游应助木木木采纳,获得10
2秒前
历了浮沉完成签到,获得积分10
2秒前
Jasper应助拼搏的蜗牛采纳,获得10
2秒前
2秒前
黄淳发布了新的文献求助10
2秒前
学渣路过完成签到,获得积分10
3秒前
mingpu应助颜靖仇采纳,获得10
3秒前
科研通AI5应助颜靖仇采纳,获得10
3秒前
思源应助颜靖仇采纳,获得10
3秒前
科研通AI5应助颜靖仇采纳,获得10
3秒前
李爱国应助颜靖仇采纳,获得10
3秒前
科研通AI5应助颜靖仇采纳,获得10
3秒前
田様应助颜靖仇采纳,获得10
3秒前
科研通AI5应助颜靖仇采纳,获得10
3秒前
隐形曼青应助颜靖仇采纳,获得10
4秒前
科研通AI5应助颜靖仇采纳,获得10
4秒前
yun完成签到 ,获得积分10
4秒前
向东东发布了新的文献求助20
4秒前
4秒前
呜呜发布了新的文献求助10
5秒前
5秒前
Hello应助雪花采纳,获得10
5秒前
5秒前
独孤幻月96应助无限若云采纳,获得10
5秒前
宽宽发布了新的文献求助10
5秒前
xsx发布了新的文献求助10
5秒前
翁醉山完成签到 ,获得积分10
6秒前
miemiemie完成签到,获得积分10
6秒前
研友_nqaogn发布了新的文献求助10
6秒前
6秒前
光亮映波发布了新的文献求助10
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4755977
求助须知:如何正确求助?哪些是违规求助? 4099220
关于积分的说明 12683475
捐赠科研通 3813239
什么是DOI,文献DOI怎么找? 2105141
邀请新用户注册赠送积分活动 1129957
关于科研通互助平台的介绍 1007956