已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UAV Swarm Path Planning Approach Based on Integration of Multi-Population Strategy and Adaptive Evolutionary Optimizer

群体行为 计算机科学 路径(计算) 数学优化 人口 运动规划 进化算法 人工智能 数学 机器人 人口学 社会学 程序设计语言
作者
Chuanyun Wang,Anqi Hu,Qian Gao,Qiong Liu,Tian Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (12): 126204-126204 被引量:1
标识
DOI:10.1088/1361-6501/ad761f
摘要

Abstract Addressing the optimal path planning problem encountered by swarm of unmanned aerial vehicle (UAV) in three-dimensional space under multiple constraints, the Multi-population Adaptive Cuckoo Search and Grey Wolf Optimizer (MACSGWO) integrates Multi-Population (MP) strategies and adaptive evolutionary optimizer including the enhanced Adaptive Grey Wolf Optimizer (AGWO) and adaptive Cuckoo search (ACS). The optimizer strategically divides the initial population into multiple sub-groups, enabling each sub-group to independently iterate. During the iteration process, the algorithm adaptively adjusts parameters based on the optimal fitness values obtained by each sub-group after each iteration. The iteration cycle is divided into two stages: during the global exploration phase, each sub-group autonomously executes AGWO and periodically shares the fitness information of the Alpha wolf with other sub-groups, accelerating convergence. In the subsequent local optimization phase, MACSGWO dynamically decides whether to initiate ACS based on the disparity in the best fitness of each sub-group after each iteration, assisting the algorithm in escaping local optima. In experiments involving various complex benchmark functions and swarm path planning scenarios, MACSGWO demonstrated significant superiority in solution stability, convergence speed, and optimal convergence value compared to multiple existing variant algorithms. The integration of MACSGWO with the best relay UAV selection strategy further optimized the communication efficiency within the swarm. MACSGWO ensures the efficient resolution of UAV swarm path planning problems, providing robust support for optimization challenges in complex, multi-constraint scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YAN发布了新的文献求助20
2秒前
小球完成签到 ,获得积分10
3秒前
4秒前
8秒前
JamesPei应助礼貌吗采纳,获得10
8秒前
cici发布了新的文献求助10
9秒前
Tao2023发布了新的文献求助10
10秒前
ZJX应助leeyc采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
哈基米德应助科研通管家采纳,获得20
13秒前
tuanheqi应助科研通管家采纳,获得150
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
守墓人发布了新的文献求助10
13秒前
科研通AI6应助伶俐断天采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得30
13秒前
科研通AI6应助科研通管家采纳,获得30
13秒前
领导范儿应助科研通管家采纳,获得10
14秒前
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
14秒前
坦率半雪完成签到,获得积分10
14秒前
15秒前
arisw完成签到,获得积分10
16秒前
wangxiaobin完成签到 ,获得积分10
16秒前
呜呜完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
chaoswu完成签到,获得积分10
19秒前
石头发布了新的文献求助10
19秒前
謓言完成签到 ,获得积分10
20秒前
伶俐断天完成签到,获得积分20
20秒前
万能图书馆应助JAY采纳,获得10
23秒前
川藏客发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290666
求助须知:如何正确求助?哪些是违规求助? 4442020
关于积分的说明 13828956
捐赠科研通 4324772
什么是DOI,文献DOI怎么找? 2373838
邀请新用户注册赠送积分活动 1369227
关于科研通互助平台的介绍 1333275