已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Foundation Language-Image Model of the Retina (FLAIR): encoding expert knowledge in text supervision

编码(内存) 计算机科学 基础(证据) 图像(数学) 流体衰减反转恢复 人工智能 自然语言处理 视网膜 计算机视觉 心理学 医学 神经科学 放射科 磁共振成像 历史 考古
作者
Julio Silva-Rodríguez,Hadi Chakor,Riadh Kobbi,José Dolz,Ismail Ben Ayed
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103357-103357 被引量:54
标识
DOI:10.1016/j.media.2024.103357
摘要

Foundation vision-language models are currently transforming computer vision, and are on the rise in medical imaging fueled by their very promising generalization capabilities. However, the initial attempts to transfer this new paradigm to medical imaging have shown less impressive performances than those observed in other domains, due to the significant domain shift and the complex, expert domain knowledge inherent to medical-imaging tasks. Motivated by the need for domain-expert foundation models, we present FLAIR, a pre-trained vision-language model for universal retinal fundus image understanding. To this end, we compiled 38 open-access, mostly categorical fundus imaging datasets from various sources, with up to 101 different target conditions and 288,307 images. We integrate the expert's domain knowledge in the form of descriptive textual prompts, during both pre-training and zero-shot inference, enhancing the less-informative categorical supervision of the data. Such a textual expert's knowledge, which we compiled from the relevant clinical literature and community standards, describes the fine-grained features of the pathologies as well as the hierarchies and dependencies between them. We report comprehensive evaluations, which illustrate the benefit of integrating expert knowledge and the strong generalization capabilities of FLAIR under difficult scenarios with domain shifts or unseen categories. When adapted with a lightweight linear probe, FLAIR outperforms fully-trained, dataset-focused models, more so in the few-shot regimes. Interestingly, FLAIR outperforms by a wide margin larger-scale generalist image-language models and retina domain-specific self-supervised networks, which emphasizes the potential of embedding experts' domain knowledge and the limitations of generalist models in medical imaging. The pre-trained model is available at: https://github.com/jusiro/FLAIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤纲完成签到 ,获得积分10
刚刚
杨无敌完成签到 ,获得积分0
2秒前
fengliurencai完成签到,获得积分10
2秒前
陈陈完成签到,获得积分10
2秒前
搞怪大侠关注了科研通微信公众号
5秒前
5秒前
6秒前
韩寒完成签到 ,获得积分10
6秒前
luckyseven完成签到,获得积分10
7秒前
7秒前
Echo1128完成签到 ,获得积分10
9秒前
路线图完成签到,获得积分10
9秒前
安静的嘚嘚完成签到 ,获得积分10
9秒前
10秒前
xiaoxuewang发布了新的文献求助10
10秒前
14秒前
15秒前
anya完成签到,获得积分10
17秒前
zsyhcl应助阿白头发多多采纳,获得10
17秒前
跟我回江南完成签到,获得积分10
18秒前
三皮完成签到,获得积分10
18秒前
18秒前
cw完成签到,获得积分10
19秒前
winnie完成签到,获得积分10
20秒前
白彦阳发布了新的文献求助10
20秒前
乔木发布了新的文献求助10
21秒前
鱼羊明完成签到 ,获得积分10
22秒前
小纯完成签到 ,获得积分10
22秒前
22秒前
23秒前
量子星尘发布了新的文献求助10
25秒前
bkagyin应助不知为何人采纳,获得10
26秒前
27秒前
mm完成签到 ,获得积分10
27秒前
tong完成签到 ,获得积分10
27秒前
27秒前
leo1999发布了新的文献求助10
28秒前
再睡十分钟完成签到 ,获得积分10
29秒前
钱多多完成签到 ,获得积分10
29秒前
风中的天蓝完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542539
求助须知:如何正确求助?哪些是违规求助? 4628834
关于积分的说明 14609866
捐赠科研通 4569918
什么是DOI,文献DOI怎么找? 2505492
邀请新用户注册赠送积分活动 1482882
关于科研通互助平台的介绍 1454215