Which comes first? Comorbidity of depression and anxiety symptoms: a cross-lagged network analysis

共病 萧条(经济学) 焦虑 精神科 心理学 临床心理学 医学 经济 凯恩斯经济学
作者
Hongyu Zou,Junyao Gao,Wanchun Wu,Lijuan Huo,Wei Zhang
出处
期刊:Social Science & Medicine [Elsevier BV]
卷期号:360: 117339-117339 被引量:13
标识
DOI:10.1016/j.socscimed.2024.117339
摘要

Depression and anxiety significantly impact college students, leading to various negative outcomes. While numerous studies have investigated the relationship between these two conditions, their temporal sequence remains unresolved. Many previous studies have concentrated on broad latent variables, often neglecting the nuanced symptomatology perspective, which may offer deeper insight into the clinical characteristics of these disorders. In this study, we collected questionnaire data from a college in South China using a cluster random sampling method. Data collection occurred over two time points, with the first round completed in November 2022 and May 2023, with a six-month interval. A total of 689 participants successfully completed the questionnaires during both rounds. Employing cross-lagged network analysis from a symptom-focused perspective, this research examines the interactions and predictive relationships between symptoms of depression and anxiety. The findings identified key symptoms-specifically "Irritability", "Guilty" and "Sad mood"- as critical bridging nodes of connection within the depression and anxiety symptom network. Our analysis revealed both bidirectional predictive relationships between certain symptoms nodes of depression and anxiety, as well as unidirectional ones. By highlighting these core nodes and their directional relationships, this study offers valuable insights that can inform targeted intervention and treatment strategies for enhancing mental health among college students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzz完成签到,获得积分10
刚刚
端庄秋双发布了新的文献求助10
1秒前
mp5完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助7分运气采纳,获得10
2秒前
2秒前
拉风的鸡子鱼完成签到,获得积分20
3秒前
3秒前
4秒前
FashionBoy应助风中的眼神采纳,获得10
4秒前
4秒前
xiaofengche发布了新的文献求助10
5秒前
情怀应助碧蓝向雁采纳,获得10
5秒前
Vicky发布了新的文献求助10
5秒前
马克完成签到,获得积分10
6秒前
6秒前
完美世界应助ZhuoCui采纳,获得10
6秒前
小榈发布了新的文献求助10
6秒前
天天快乐应助文光采纳,获得10
6秒前
12123浪发布了新的文献求助10
7秒前
7秒前
XXX给XXX的求助进行了留言
9秒前
小席完成签到,获得积分10
9秒前
bkagyin应助自觉的乘云采纳,获得10
9秒前
小燕子发布了新的文献求助10
10秒前
10秒前
xiaohe完成签到,获得积分10
10秒前
xiaofengche完成签到,获得积分10
11秒前
令人秃头发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
大模型应助wuw666采纳,获得10
14秒前
15秒前
lalala应助郝宝真采纳,获得10
15秒前
端庄的静槐完成签到,获得积分10
16秒前
17秒前
17秒前
机灵班应助小江不饿采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297937
求助须知:如何正确求助?哪些是违规求助? 4446651
关于积分的说明 13840081
捐赠科研通 4331772
什么是DOI,文献DOI怎么找? 2377938
邀请新用户注册赠送积分活动 1373193
关于科研通互助平台的介绍 1338770