Application of IoT-Based Drones in Precision Agriculture for Pest Control

无人机 人工智能 计算机科学 深度学习 机器学习 学习迁移 精准农业 人工神经网络 特征(语言学) 航程(航空) 特征提取 支持向量机 农业 工程类 生态学 生物 哲学 航空航天工程 遗传学 语言学
作者
Mohamad Reda A. Refaai,Vinjamuri S. N. C. H. Dattu,N. Gireesh,Ekta Dixit,C.H. Sandeep,David Christopher
出处
期刊:Advances in Materials Science and Engineering [Hindawi Publishing Corporation]
卷期号:2022: 1-12 被引量:11
标识
DOI:10.1155/2022/1160258
摘要

Unmanned aerial vehicles (UAVs), commonly known as drones, have been progressively prevalent due to their capability to operate quickly and their vast range of applications in a variety of real-world circumstances. The utilization of UAVs in precision farming has lately gained a lot of attention from the scientific community. This study addresses with the assistance of drones in the precision agricultural area. This paper makes significant contributions by analyzing communication protocols and applying them to the challenge of commanding a fleet of drones to protect crops from parasite infestations. In this research, the effectiveness of nine powerful deep neural network models is measured for the detection of plant diseases using diverse methodologies. These deep neural networks are adapted to the immediate situation using transfer learning and deep extraction of features approaches. The presented study takes into account the used pretrained deep learning model for extracting features and fine-tuning. The deep feature extraction characteristics are subsequently categorized using support vector machines (SVMs) and extreme learning machines (ELMs). For measuring performance, the precision, sensitivities, specific, and F1-score are all evaluated. Deep feature extraction and SVM/ELM classification generated better outcomes than transfer learning, according to the analysis result. Furthermore, the analysis of the various methodologies tries to assess their effectiveness and costs. The different approaches, for example, confront difficulties such as investigating the region in the shortest possible time feasible, while eliminating the same region being searched by more drones, detecting parasites, and stopping their spread by applying the appropriate number of pesticides. Simulation models are a significant aid to researchers in conducting to evaluate these technologies and creating specific tactics and coordinating procedures capable of effectively supporting farms and achieving the aim. The main objective of this paper is to compare the search techniques of two distinct methods of parasitic to identify performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿九发布了新的文献求助10
刚刚
Ash完成签到 ,获得积分10
4秒前
ZJX完成签到,获得积分10
4秒前
5秒前
6秒前
李哈哈发布了新的文献求助10
9秒前
10秒前
10秒前
gy发布了新的文献求助10
10秒前
wentong完成签到,获得积分10
11秒前
南桑完成签到 ,获得积分10
12秒前
研友_P85D6Z发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
lulu发布了新的文献求助10
12秒前
不是山谷完成签到,获得积分10
12秒前
HI完成签到 ,获得积分10
13秒前
喜多多的小眼静完成签到 ,获得积分10
13秒前
健康的大门完成签到,获得积分10
14秒前
chestnut灬完成签到 ,获得积分10
15秒前
李小新完成签到 ,获得积分10
15秒前
领导范儿应助欣喜的嘉熙采纳,获得10
17秒前
Neo完成签到,获得积分10
17秒前
RenS完成签到,获得积分10
19秒前
小丁同学应助gy采纳,获得10
19秒前
自然向彤完成签到 ,获得积分10
19秒前
小二郎应助ceeray23采纳,获得20
22秒前
liaodongjun完成签到,获得积分10
23秒前
rui完成签到 ,获得积分10
23秒前
优雅的老姆完成签到,获得积分10
25秒前
星辰大海应助djbj2022采纳,获得10
25秒前
Akim应助蛋蛋采纳,获得10
27秒前
28秒前
gy关闭了gy文献求助
29秒前
lulu完成签到,获得积分10
30秒前
你倒是发啊完成签到,获得积分10
30秒前
万能图书馆应助Owen采纳,获得10
30秒前
Vivian完成签到,获得积分10
33秒前
叶夜南发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
33秒前
wuxunxun2015完成签到,获得积分10
36秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883885
求助须知:如何正确求助?哪些是违规求助? 3426198
关于积分的说明 10747283
捐赠科研通 3151036
什么是DOI,文献DOI怎么找? 1739202
邀请新用户注册赠送积分活动 839633
科研通“疑难数据库(出版商)”最低求助积分说明 784734