Statistical, machine learning and deep learning forecasting methods: Comparisons and ways forward

计算机科学 人工智能 领域(数学) 机器学习 系列(地层学) 统计模型 时间序列 技术预测 期限(时间) 深度学习 数学 古生物学 物理 量子力学 纯数学 生物
作者
Spyros Makridakis,Evangelos Spiliotis,Vassilios Assimakopoulos,Artemios-Anargyros Semenoglou,Gary Mulder,Κωνσταντίνος Νικολόπουλος
出处
期刊:Journal of the Operational Research Society [Palgrave Macmillan]
卷期号:74 (3): 840-859 被引量:47
标识
DOI:10.1080/01605682.2022.2118629
摘要

The purpose of this paper is to test empirically the value currently added by Deep Learning (DL) approaches in time series forecasting by comparing the accuracy of some state-of-the-art DL methods with that of popular Machine Learning (ML) and statistical ones. The paper consists of three main parts. The first part summarizes the results of a past study that compared statistical with ML methods using a subset of the M3 data, extending however its results to include DL models, developed using the GluonTS toolkit. The second part widens the study by considering all M3 series and comparing the results obtained with that of other studies that have used the same data for evaluating new forecasting methods. We find that combinations of DL models perform better than most standard models, both statistical and ML, especially for the case of monthly series and long-term forecasts. However, these improvements come at the cost of significantly increased computational time. Finally, the third part describes the advantages and drawbacks of DL methods, discussing the implications of our findings to the practice of forecasting. We conclude the paper by discussing how the field of forecasting has evolved over time and proposing some directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
SCISSH完成签到 ,获得积分10
2秒前
夏禾绿完成签到 ,获得积分10
3秒前
5秒前
Matthew完成签到,获得积分10
5秒前
鱼粥很好发布了新的文献求助10
6秒前
ytli发布了新的文献求助10
7秒前
7秒前
8秒前
千葉发布了新的文献求助10
9秒前
jyingyue完成签到,获得积分10
9秒前
9秒前
Bazinga发布了新的文献求助10
10秒前
涵泽发布了新的文献求助10
10秒前
无水乙醚完成签到,获得积分10
10秒前
吨吨喝水发布了新的文献求助10
12秒前
Ethanyoyo0917完成签到,获得积分10
13秒前
13秒前
14秒前
科研通AI5应助yuminger采纳,获得10
14秒前
胡可完成签到,获得积分10
14秒前
小孟吖完成签到 ,获得积分10
17秒前
大模型应助海孩子采纳,获得10
17秒前
Jony发布了新的文献求助10
17秒前
独特的沛凝完成签到,获得积分10
17秒前
小欧文完成签到,获得积分10
18秒前
吾系渣渣辉完成签到 ,获得积分10
19秒前
英俊的铭应助乐观的颦采纳,获得10
19秒前
20秒前
20秒前
猪猪hero应助小蓝采纳,获得10
20秒前
祁曼岚完成签到,获得积分10
21秒前
zhangshan完成签到 ,获得积分10
22秒前
英俊的铭应助千葉采纳,获得10
22秒前
tenfarmers发布了新的文献求助30
23秒前
科研通AI5应助吨吨喝水采纳,获得10
23秒前
24秒前
dalong完成签到,获得积分10
25秒前
26秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346927
关于积分的说明 10331008
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763770