BTMF-GAN: A multi-modal MRI fusion generative adversarial network for brain tumors

计算机科学 图像融合 图像质量 融合 人工智能 特征提取 特征(语言学) 失真(音乐) 计算机视觉 模式识别(心理学) 图像(数学) 语言学 哲学 放大器 计算机网络 带宽(计算)
作者
Xiao Liu,Hongyi Chen,Chong Yao,Rui Xiang,Kun Zhou,Peng Du,Weifan Liu,Jie Liu,Zekuan Yu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:157: 106769-106769 被引量:12
标识
DOI:10.1016/j.compbiomed.2023.106769
摘要

Image fusion techniques have been widely used for multi-modal medical image fusion tasks. Most existing methods aim to improve the overall quality of the fused image and do not focus on the more important textural details and contrast between the tissues of the lesion in the regions of interest (ROIs). This can lead to the distortion of important tumor ROIs information and thus limits the applicability of the fused images in clinical practice. To improve the fusion quality of ROIs relevant to medical implications, we propose a multi-modal MRI fusion generative adversarial network (BTMF-GAN) for the task of multi-modal MRI fusion of brain tumors. Unlike existing deep learning approaches which focus on improving the global quality of the fused image, the proposed BTMF-GAN aims to achieve a balance between tissue details and structural contrasts in brain tumor, which is the region of interest crucial to many medical applications. Specifically, we employ a generator with a U-shaped nested structure and residual U-blocks (RSU) to enhance multi-scale feature extraction. To enhance and recalibrate features of the encoder, the multi-perceptual field adaptive transformer feature enhancement module (MRF-ATFE) is used between the encoder and the decoder instead of a skip connection. To increase contrast between tumor tissues of the fused image, a mask-part block is introduced to fragment the source image and the fused image, based on which, we propose a novel salient loss function. Qualitative and quantitative analysis of the results on the public and clinical datasets demonstrate the superiority of the proposed approach to many other commonly used fusion methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
帮主哥哥应助抚琴祛魅采纳,获得20
2秒前
打工人发布了新的文献求助10
4秒前
4秒前
路过你的夏完成签到,获得积分10
5秒前
7秒前
7秒前
念芹完成签到,获得积分10
7秒前
pengsia发布了新的文献求助10
8秒前
8秒前
打工人完成签到,获得积分20
8秒前
Joker发布了新的文献求助10
8秒前
科研通AI5应助AlexLee采纳,获得10
9秒前
yingying完成签到,获得积分10
9秒前
科研通AI5应助麻辣爆锅采纳,获得10
11秒前
AlinaLee发布了新的文献求助10
11秒前
杳子尧发布了新的文献求助10
12秒前
翔翔超人发布了新的文献求助10
13秒前
zho发布了新的文献求助10
13秒前
多情怡完成签到,获得积分10
14秒前
15秒前
英俊的铭应助云_123采纳,获得10
16秒前
帅气宛凝二号完成签到,获得积分20
17秒前
17秒前
碧蓝亦玉完成签到,获得积分10
18秒前
19秒前
cccxxx完成签到,获得积分10
19秒前
现代的擎苍完成签到,获得积分10
20秒前
棉花糖QAQ完成签到 ,获得积分10
20秒前
Alerina完成签到,获得积分10
20秒前
tudou0210发布了新的文献求助10
20秒前
wanci应助Ling采纳,获得10
20秒前
852应助杳子尧采纳,获得10
21秒前
21秒前
22秒前
酷波er应助雪山飞龙采纳,获得10
22秒前
22秒前
duan发布了新的文献求助10
23秒前
冷傲的山菡完成签到,获得积分10
23秒前
烟花应助田小姐采纳,获得10
24秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825871
求助须知:如何正确求助?哪些是违规求助? 3368162
关于积分的说明 10449560
捐赠科研通 3087618
什么是DOI,文献DOI怎么找? 1698750
邀请新用户注册赠送积分活动 816999
科研通“疑难数据库(出版商)”最低求助积分说明 769991