BTMF-GAN: A multi-modal MRI fusion generative adversarial network for brain tumors

计算机科学 图像融合 图像质量 融合 人工智能 特征提取 特征(语言学) 失真(音乐) 计算机视觉 模式识别(心理学) 图像(数学) 语言学 哲学 放大器 计算机网络 带宽(计算)
作者
Xiao Liu,Hongyi Chen,Chong Yao,Rui Xiang,Kun Zhou,Peng Du,Weifan Liu,Jie Liu,Zekuan Yu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:157: 106769-106769 被引量:12
标识
DOI:10.1016/j.compbiomed.2023.106769
摘要

Image fusion techniques have been widely used for multi-modal medical image fusion tasks. Most existing methods aim to improve the overall quality of the fused image and do not focus on the more important textural details and contrast between the tissues of the lesion in the regions of interest (ROIs). This can lead to the distortion of important tumor ROIs information and thus limits the applicability of the fused images in clinical practice. To improve the fusion quality of ROIs relevant to medical implications, we propose a multi-modal MRI fusion generative adversarial network (BTMF-GAN) for the task of multi-modal MRI fusion of brain tumors. Unlike existing deep learning approaches which focus on improving the global quality of the fused image, the proposed BTMF-GAN aims to achieve a balance between tissue details and structural contrasts in brain tumor, which is the region of interest crucial to many medical applications. Specifically, we employ a generator with a U-shaped nested structure and residual U-blocks (RSU) to enhance multi-scale feature extraction. To enhance and recalibrate features of the encoder, the multi-perceptual field adaptive transformer feature enhancement module (MRF-ATFE) is used between the encoder and the decoder instead of a skip connection. To increase contrast between tumor tissues of the fused image, a mask-part block is introduced to fragment the source image and the fused image, based on which, we propose a novel salient loss function. Qualitative and quantitative analysis of the results on the public and clinical datasets demonstrate the superiority of the proposed approach to many other commonly used fusion methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默听芹完成签到,获得积分10
1秒前
辛勤采柳发布了新的文献求助10
1秒前
大魁完成签到,获得积分10
1秒前
Mandy完成签到,获得积分10
2秒前
YifanWang应助柏柳采纳,获得30
2秒前
LLLLL完成签到,获得积分10
2秒前
Chere20200628完成签到 ,获得积分10
2秒前
饮冰室的熊完成签到,获得积分10
2秒前
玩命的书琴完成签到,获得积分10
3秒前
3秒前
阔达月亮完成签到,获得积分10
3秒前
yqcj59完成签到,获得积分10
3秒前
小章鱼完成签到,获得积分10
4秒前
xdf发布了新的文献求助10
4秒前
unfeeling8完成签到 ,获得积分10
5秒前
CodeCraft应助赣南研究僧采纳,获得10
5秒前
kefan_123发布了新的文献求助10
5秒前
乔恩完成签到,获得积分10
5秒前
王碱完成签到,获得积分10
5秒前
海鸥别叫了完成签到 ,获得积分10
6秒前
6秒前
andrewyu完成签到,获得积分10
6秒前
香蕉觅云应助小吴采纳,获得10
7秒前
GHL完成签到,获得积分10
7秒前
胖头鱼发布了新的文献求助30
8秒前
9秒前
9秒前
小瑄完成签到 ,获得积分10
9秒前
Miya_han完成签到,获得积分10
10秒前
wu完成签到,获得积分10
10秒前
yihaiqin完成签到 ,获得积分10
10秒前
辛勤采柳完成签到,获得积分10
10秒前
辛坦夫完成签到,获得积分10
10秒前
舒心储完成签到,获得积分10
11秒前
cassie完成签到,获得积分10
11秒前
11秒前
佟鹭其完成签到 ,获得积分10
12秒前
Lucy完成签到,获得积分10
13秒前
ZHN完成签到,获得积分10
13秒前
coffeecoffee完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470743
求助须知:如何正确求助?哪些是违规求助? 4573583
关于积分的说明 14339408
捐赠科研通 4500666
什么是DOI,文献DOI怎么找? 2465922
邀请新用户注册赠送积分活动 1454143
关于科研通互助平台的介绍 1428858