Computational model for predicting the dynamic dissolution and evolution behaviors of gases in liquids

溶解 传质 饱和(图论) 热力学 氧气 体积流量 冷凝 机械 流量(数学) 化学 物理 物理化学 数学 组合数学 有机化学
作者
Zhipeng Ren,Deyou Li,Hongjie Wang,Jintao Liu,Yong Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (10) 被引量:22
标识
DOI:10.1063/5.0118794
摘要

Dynamic gas–liquid mass transfer behaviors are widely encountered in the chemical, environmental, and engineering fields. Referring to the Singhal full cavitation model, Henry's law, and Zhou's experiments, we innovatively developed a computational model for dissolved and released mass-transfer to revolutionize the independent unidirectional gas-to-liquid or liquid-to-gas theory. From a new perspective, coupled dissolution and evolution mechanisms were defined similar to how condensation and evaporation were redefined, where dissolution and release mass-transfer prediction methods that can be applied to three-dimensional calculations were integrated for the first time. The dissolved gas saturation concentration was the criterion for determining the direction of mass transfer. According to the theoretical derivation, the driving forces behind the dissolution and evolution are the remaining undissolved gas and real-time solution concentration, respectively. We confirmed the validity of the proposed dynamic model using an unsteady simulation after a grid independence study and an experimental verification of dissolved oxygen concentration in plug-discharge flow. The difference in dissolved oxygen concentration between simulations of this computational model and experiments could be low as 2.0%. A higher dissolved oxygen concentration was distributed in the flow separation and throat gas–liquid blocking zones, indicating that a surge in the flow velocity led to an increased mass transfer rate. In addition, a parametric study was conducted to consider the impact of the oxygen volume fraction and initial dissolved oxygen concentration on the real-time concentration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助zhangxinting0818采纳,获得10
1秒前
圆圆发布了新的文献求助10
1秒前
llllliu完成签到,获得积分10
2秒前
zhangjian完成签到,获得积分20
3秒前
侯MM发布了新的文献求助10
3秒前
3秒前
辣辣完成签到,获得积分10
3秒前
赘婿应助Kikisman采纳,获得30
3秒前
英姑应助黄音采纳,获得10
3秒前
慕青应助bk_tian采纳,获得10
4秒前
jovial完成签到,获得积分10
4秒前
4秒前
研友_Z7WQzZ发布了新的文献求助10
5秒前
席以亦发布了新的文献求助20
5秒前
6秒前
rrrr完成签到,获得积分20
6秒前
善学以致用应助zhangjian采纳,获得10
6秒前
6秒前
bkagyin应助XLL采纳,获得10
6秒前
WRT完成签到,获得积分10
7秒前
7秒前
7秒前
共享精神应助自觉的乘云采纳,获得10
7秒前
8秒前
8秒前
8秒前
宦邶完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
feezy发布了新的文献求助20
10秒前
10秒前
10秒前
晟sheng完成签到 ,获得积分10
11秒前
wxh发布了新的文献求助10
11秒前
WRT发布了新的文献求助10
11秒前
高翔发布了新的文献求助10
12秒前
12秒前
暖暖发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653416
求助须知:如何正确求助?哪些是违规求助? 4789940
关于积分的说明 15064113
捐赠科研通 4812066
什么是DOI,文献DOI怎么找? 2574236
邀请新用户注册赠送积分活动 1529924
关于科研通互助平台的介绍 1488633