A DenseNet Model for Joint Activity Recognition and Indoor Localization

假种皮 计算机科学 深度学习 人工智能 活动识别 接头(建筑物) 基线(sea) 超参数 机器学习 特征(语言学) 模式识别(心理学) 工程类 海洋学 生物 地质学 哲学 园艺 语言学 建筑工程
作者
Ade Irawan,Adam Marsono Putra,Hani Ramadhan
标识
DOI:10.1109/iaict55358.2022.9887407
摘要

Activity recognition and indoor positioning (ARIL) tasks have benefited society in various areas, such as surveillance, healthcare, and entertainment. The emerging development of ARIL employs the usage of Wi-Fi Channel State Information (CSI) as input instead of Received Signal Strength Indicator (RSSI), which is often missing and disturbed. ResNet, as one of the Deep Learning models, can perform the joint task of ARIL with high accuracy. However, due to the rapid development in Deep Learning, other newer models have the potential to improve the quality of ARIL rather than ResNet, which has a large number of training parameters. We propose applying a DenseNet model as a new feature extractor and Deep Learning architecture for the joint task of ARIL with CSI data. The architecture of DenseNet can improve the quality of ARIL thanks to the dense block, which can extract more relevant features from CSI data efficiently. We demonstrate that our proposed DenseNet model for joint ARIL improved the overall accuracy and the efficiency of the Deep Learning model using a real-world CSI dataset. Using a real-world CSI dataset, our proposed model outperforms the baseline by 4.16% on activity recognition and 1.04% on indoor localization. With hyperparameter tuning, we further reduce the trainable parameters by 64.29%, also 27.88% less than the baseline, with the cost of slightly decreasing the performance on activity recognition but increasing the performance on indoor localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康利萍发布了新的文献求助10
2秒前
研友_VZG7GZ应助summer采纳,获得10
3秒前
玄仙完成签到,获得积分10
4秒前
科研通AI2S应助scloar采纳,获得10
4秒前
sunshine完成签到 ,获得积分10
5秒前
7秒前
9秒前
大模型应助伯赏不可采纳,获得10
10秒前
10秒前
11秒前
11秒前
14秒前
mengxue完成签到,获得积分10
14秒前
清爽胖飞完成签到,获得积分10
15秒前
细心的岩发布了新的文献求助10
16秒前
张土豆发布了新的文献求助10
17秒前
Owen应助康利萍采纳,获得10
18秒前
Lucas应助许诺采纳,获得10
18秒前
18秒前
ZgnomeshghT发布了新的文献求助10
18秒前
19秒前
赘婿应助小璐璐呀采纳,获得10
19秒前
张超发布了新的文献求助10
19秒前
19秒前
19秒前
zrm完成签到,获得积分10
20秒前
20秒前
兆兆发布了新的文献求助10
21秒前
21秒前
pgg发布了新的文献求助10
22秒前
23秒前
Owen应助ranshaode采纳,获得10
23秒前
蝶恋花发布了新的文献求助10
23秒前
丁sir完成签到,获得积分10
24秒前
Alnair发布了新的文献求助10
24秒前
慕青应助张恺琦采纳,获得10
25秒前
李大侠发布了新的文献求助10
25秒前
pgg完成签到,获得积分10
26秒前
光头强完成签到,获得积分10
28秒前
石中酒完成签到 ,获得积分10
29秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Ergodic Theory 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
Clinical Observation and Analysis of Transient Postoperative CA-125 Elevation in a Patient with Sigmoid Colon Adenocarcinoma 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836785
求助须知:如何正确求助?哪些是违规求助? 3379022
关于积分的说明 10507257
捐赠科研通 3098893
什么是DOI,文献DOI怎么找? 1706622
邀请新用户注册赠送积分活动 821120
科研通“疑难数据库(出版商)”最低求助积分说明 772445