Field evaluation of a random forest activity classifier for wrist-worn accelerometer data

加速度计 随机森林 手腕 分类器(UML) 计算机科学 活动识别 交叉验证 活动记录 日常生活活动 物理医学与康复 活动监视器 人工智能 机器学习 体力活动 医学 数学 物理疗法 放射科 内分泌学 昼夜节律 操作系统
作者
Toby Pavey,Nicholas D. Gilson,Sjaan R. Gomersall,Bronwyn Clark,Stewart G. Trost
出处
期刊:Journal of Science and Medicine in Sport [Elsevier]
卷期号:20 (1): 75-80 被引量:173
标识
DOI:10.1016/j.jsams.2016.06.003
摘要

Objectives Wrist-worn accelerometers are convenient to wear and associated with greater wear-time compliance. Previous work has generally relied on choreographed activity trials to train and test classification models. However, validity in free-living contexts is starting to emerge. Study aims were: (1) train and test a random forest activity classifier for wrist accelerometer data; and (2) determine if models trained on laboratory data perform well under free-living conditions. Design Twenty-one participants (mean age = 27.6 ± 6.2) completed seven lab-based activity trials and a 24 h free-living trial (N = 16). Methods Participants wore a GENEActiv monitor on the non-dominant wrist. Classification models recognising four activity classes (sedentary, stationary+, walking, and running) were trained using time and frequency domain features extracted from 10-s non-overlapping windows. Model performance was evaluated using leave-one-out-cross-validation. Models were implemented using the randomForest package within R. Classifier accuracy during the 24 h free living trial was evaluated by calculating agreement with concurrently worn activPAL monitors. Results Overall classification accuracy for the random forest algorithm was 92.7%. Recognition accuracy for sedentary, stationary+, walking, and running was 80.1%, 95.7%, 91.7%, and 93.7%, respectively for the laboratory protocol. Agreement with the activPAL data (stepping vs. non-stepping) during the 24 h free-living trial was excellent and, on average, exceeded 90%. The ICC for stepping time was 0.92 (95% CI = 0.75–0.97). However, sensitivity and positive predictive values were modest. Mean bias was 10.3 min/d (95% LOA = −46.0 to 25.4 min/d). Conclusions The random forest classifier for wrist accelerometer data yielded accurate group-level predictions under controlled conditions, but was less accurate at identifying stepping verse non-stepping behaviour in free living conditions Future studies should conduct more rigorous field-based evaluations using observation as a criterion measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
意义完成签到,获得积分10
刚刚
161319141完成签到 ,获得积分10
刚刚
搜集达人应助一一一采纳,获得10
1秒前
1秒前
小二郎应助万里海天采纳,获得10
1秒前
hodi完成签到,获得积分10
2秒前
sun完成签到 ,获得积分10
2秒前
2秒前
sunyanghu369发布了新的文献求助10
2秒前
Dsk5完成签到,获得积分10
2秒前
xiaoliu发布了新的文献求助10
3秒前
清爽嚓茶完成签到,获得积分10
3秒前
harino发布了新的文献求助10
3秒前
4秒前
4秒前
斯文败类应助简单的听寒采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
Novoa应助妮妮采纳,获得10
7秒前
栗子发布了新的文献求助20
7秒前
麦麦完成签到,获得积分10
8秒前
8秒前
zouni发布了新的文献求助10
9秒前
9秒前
精明若风发布了新的文献求助10
10秒前
CURRY30完成签到,获得积分10
10秒前
hjq发布了新的文献求助10
10秒前
sinton完成签到,获得积分10
10秒前
威尔士蛋蛋完成签到,获得积分10
11秒前
30333发布了新的文献求助10
12秒前
爆米花应助666采纳,获得10
12秒前
好好发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
科研通AI2S应助学者采纳,获得10
12秒前
福来发布了新的文献求助10
13秒前
陈声坤完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711286
求助须知:如何正确求助?哪些是违规求助? 5202990
关于积分的说明 15263800
捐赠科研通 4863647
什么是DOI,文献DOI怎么找? 2610818
邀请新用户注册赠送积分活动 1561136
关于科研通互助平台的介绍 1518616