Field evaluation of a random forest activity classifier for wrist-worn accelerometer data

加速度计 随机森林 手腕 分类器(UML) 计算机科学 活动识别 交叉验证 活动记录 日常生活活动 物理医学与康复 活动监视器 人工智能 机器学习 体力活动 医学 数学 物理疗法 放射科 内分泌学 昼夜节律 操作系统
作者
Toby Pavey,Nicholas D. Gilson,Sjaan R. Gomersall,Bronwyn Clark,Stewart G. Trost
出处
期刊:Journal of Science and Medicine in Sport [Elsevier BV]
卷期号:20 (1): 75-80 被引量:153
标识
DOI:10.1016/j.jsams.2016.06.003
摘要

Objectives Wrist-worn accelerometers are convenient to wear and associated with greater wear-time compliance. Previous work has generally relied on choreographed activity trials to train and test classification models. However, validity in free-living contexts is starting to emerge. Study aims were: (1) train and test a random forest activity classifier for wrist accelerometer data; and (2) determine if models trained on laboratory data perform well under free-living conditions. Design Twenty-one participants (mean age = 27.6 ± 6.2) completed seven lab-based activity trials and a 24 h free-living trial (N = 16). Methods Participants wore a GENEActiv monitor on the non-dominant wrist. Classification models recognising four activity classes (sedentary, stationary+, walking, and running) were trained using time and frequency domain features extracted from 10-s non-overlapping windows. Model performance was evaluated using leave-one-out-cross-validation. Models were implemented using the randomForest package within R. Classifier accuracy during the 24 h free living trial was evaluated by calculating agreement with concurrently worn activPAL monitors. Results Overall classification accuracy for the random forest algorithm was 92.7%. Recognition accuracy for sedentary, stationary+, walking, and running was 80.1%, 95.7%, 91.7%, and 93.7%, respectively for the laboratory protocol. Agreement with the activPAL data (stepping vs. non-stepping) during the 24 h free-living trial was excellent and, on average, exceeded 90%. The ICC for stepping time was 0.92 (95% CI = 0.75–0.97). However, sensitivity and positive predictive values were modest. Mean bias was 10.3 min/d (95% LOA = −46.0 to 25.4 min/d). Conclusions The random forest classifier for wrist accelerometer data yielded accurate group-level predictions under controlled conditions, but was less accurate at identifying stepping verse non-stepping behaviour in free living conditions Future studies should conduct more rigorous field-based evaluations using observation as a criterion measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Horizon完成签到 ,获得积分10
2秒前
科研孙完成签到,获得积分10
3秒前
红烧肉耶完成签到,获得积分10
3秒前
杨远杰完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
BenQiu完成签到,获得积分10
7秒前
lhy12345完成签到 ,获得积分10
8秒前
墨扬完成签到,获得积分10
11秒前
时米米米完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
21秒前
benzene完成签到 ,获得积分10
23秒前
SciEngineerX完成签到,获得积分10
25秒前
科研通AI5应助波哥采纳,获得10
26秒前
不可靠月亮完成签到,获得积分10
27秒前
平淡萍完成签到,获得积分20
29秒前
微笑枫叶完成签到,获得积分20
40秒前
Tysonqu完成签到,获得积分10
42秒前
可靠月亮完成签到,获得积分10
43秒前
搬砖的化学男完成签到 ,获得积分0
44秒前
李爱国应助科研通管家采纳,获得10
45秒前
完美世界应助科研通管家采纳,获得10
45秒前
碧蓝的幻悲完成签到 ,获得积分10
46秒前
北北完成签到 ,获得积分10
46秒前
snail01完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
50秒前
合适的寄灵完成签到 ,获得积分10
50秒前
lingling完成签到 ,获得积分10
50秒前
tangyong完成签到,获得积分0
52秒前
一粟的粉r完成签到 ,获得积分10
53秒前
YAN完成签到 ,获得积分10
55秒前
57秒前
57秒前
阿尔治完成签到,获得积分10
1分钟前
土豆晴完成签到 ,获得积分10
1分钟前
修慈发布了新的文献求助10
1分钟前
夏定海完成签到,获得积分10
1分钟前
蒙蒙细雨完成签到 ,获得积分10
1分钟前
斯文麦片完成签到 ,获得积分10
1分钟前
修慈完成签到,获得积分10
1分钟前
xingyi完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270922
求助须知:如何正确求助?哪些是违规求助? 3801231
关于积分的说明 11911119
捐赠科研通 3447991
什么是DOI,文献DOI怎么找? 1891143
邀请新用户注册赠送积分活动 941847
科研通“疑难数据库(出版商)”最低求助积分说明 845973