Feature Selection Based on Structured Sparsity: A Comprehensive Study

特征选择 聚类分析 人工智能 计算机科学 机器学习 选择(遗传算法) 特征(语言学) 正规化(语言学) Lasso(编程语言) 模式识别(心理学) 支持向量机 数据挖掘 语言学 万维网 哲学
作者
Jie Gui,Zhenan Sun,Shuiwang Ji,Dacheng Tao,Tieniu Tan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 1490-1507 被引量:314
标识
DOI:10.1109/tnnls.2016.2551724
摘要

Feature selection (FS) is an important component of many pattern recognition tasks. In these tasks, one is often confronted with very high-dimensional data. FS algorithms are designed to identify the relevant feature subset from the original features, which can facilitate subsequent analysis, such as clustering and classification. Structured sparsity-inducing feature selection (SSFS) methods have been widely studied in the last few years, and a number of algorithms have been proposed. However, there is no comprehensive study concerning the connections between different SSFS methods, and how they have evolved. In this paper, we attempt to provide a survey on various SSFS methods, including their motivations and mathematical representations. We then explore the relationship among different formulations and propose a taxonomy to elucidate their evolution. We group the existing SSFS methods into two categories, i.e., vector-based feature selection (feature selection based on lasso) and matrix-based feature selection (feature selection based on lr,p-norm). Furthermore, FS has been combined with other machine learning algorithms for specific applications, such as multitask learning, multilabel learning, multiview learning, classification, and clustering. This paper not only compares the differences and commonalities of these methods based on regression and regularization strategies, but also provides useful guidelines to practitioners working in related fields to guide them how to do feature selection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jan完成签到,获得积分10
刚刚
jia完成签到,获得积分10
刚刚
零零零零完成签到,获得积分10
刚刚
微光熠完成签到,获得积分10
刚刚
CSF完成签到 ,获得积分10
刚刚
fpy完成签到,获得积分10
刚刚
小冬猫完成签到 ,获得积分10
刚刚
赵某人完成签到,获得积分10
刚刚
Lynn完成签到,获得积分10
1秒前
妍妍发布了新的文献求助10
1秒前
liuchang完成签到 ,获得积分10
3秒前
顺心的定帮完成签到 ,获得积分10
3秒前
藤井桔子树完成签到,获得积分10
3秒前
3秒前
carnationli发布了新的文献求助10
3秒前
4秒前
CCCCCL完成签到,获得积分10
4秒前
努力向上的小刘完成签到,获得积分10
5秒前
elysia完成签到,获得积分10
5秒前
xu发布了新的文献求助10
5秒前
5秒前
Hasghab应助英勇的蜡烛采纳,获得20
5秒前
wanci应助鱼叮叮采纳,获得30
5秒前
瑶啊瑶完成签到,获得积分10
6秒前
刘鸣宣发布了新的文献求助10
6秒前
6秒前
Kolalone完成签到,获得积分10
7秒前
7秒前
时年完成签到,获得积分10
7秒前
David发布了新的文献求助10
7秒前
阿宝完成签到,获得积分10
8秒前
司空天磊完成签到,获得积分10
8秒前
谷粱紫槐完成签到,获得积分10
9秒前
9秒前
111发布了新的文献求助10
9秒前
zhaosiqi完成签到 ,获得积分10
9秒前
英俊的铭应助小冬猫采纳,获得10
9秒前
牵墨完成签到,获得积分10
9秒前
coolru完成签到,获得积分10
9秒前
桶桶要好好学习完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080327
求助须知:如何正确求助?哪些是违规求助? 4298282
关于积分的说明 13390804
捐赠科研通 4121842
什么是DOI,文献DOI怎么找? 2257344
邀请新用户注册赠送积分活动 1261652
关于科研通互助平台的介绍 1195768