Model updating of a full-scale FE model with nonlinear constraint equations and sensitivity-based cluster analysis for updating parameters

灵敏度(控制系统) 非线性系统 约束(计算机辅助设计) 集合(抽象数据类型) 计算机科学 一致性(知识库) 过程(计算) 数学优化 有限元法 情态动词 比例(比率) 算法 工程类 数学 结构工程 人工智能 机械工程 操作系统 物理 量子力学 化学 高分子化学 程序设计语言 电子工程
作者
Jinwoo Jang,Andrew W. Smyth
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:83: 337-355 被引量:53
标识
DOI:10.1016/j.ymssp.2016.06.018
摘要

The objective of structural model updating is to reduce inherent modeling errors in Finite Element (FE) models due to simplifications, idealized connections, and uncertainties of material properties. Updated FE models, which have less discrepancies with real structures, give more precise predictions of dynamic behaviors for future analyses. However, model updating becomes more difficult when applied to civil structures with a large number of structural components and complicated connections. In this paper, a full-scale FE model of a major long-span bridge has been updated for improved consistency with real measured data. Two methods are applied to improve the model updating process. The first method focuses on improving the agreement of the updated mode shapes with the measured data. A nonlinear inequality constraint equation is used to an optimization procedure, providing the capability to regulate updated mode shapes to remain within reasonable agreements with those observed. An interior point algorithm deals with nonlinearity in the objective function and constraints. The second method finds very efficient updating parameters in a more systematic way. The selection of updating parameters in FE models is essential to have a successful updating result because the parameters are directly related to the modal properties of dynamic systems. An in-depth sensitivity analysis is carried out in an effort to precisely understand the effects of physical parameters in the FE model on natural frequencies. Based on the sensitivity analysis, cluster analysis is conducted to find a very efficient set of updating parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助黎书禾采纳,获得10
刚刚
韦鑫龙完成签到,获得积分10
1秒前
msd2phd完成签到,获得积分10
2秒前
4秒前
vv发布了新的文献求助10
5秒前
随缘完成签到 ,获得积分10
7秒前
8秒前
8秒前
CipherSage应助不是假笑女王采纳,获得10
8秒前
科研通AI2S应助JC采纳,获得10
9秒前
小呆发布了新的文献求助10
10秒前
amber完成签到,获得积分10
10秒前
xue完成签到,获得积分10
10秒前
11秒前
zzc发布了新的文献求助10
12秒前
14秒前
15秒前
麦苗果果完成签到,获得积分10
15秒前
16秒前
apple完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
姜落完成签到,获得积分10
18秒前
黎书禾发布了新的文献求助10
18秒前
赘婿应助shasha采纳,获得10
19秒前
海绵猫完成签到,获得积分10
19秒前
20秒前
JC完成签到,获得积分10
20秒前
jiuwu发布了新的文献求助10
20秒前
Carmelo完成签到,获得积分10
22秒前
大红发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
森林木完成签到,获得积分10
23秒前
姜落发布了新的文献求助10
24秒前
无聊的寒香完成签到,获得积分10
25秒前
小米发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490133
求助须知:如何正确求助?哪些是违规求助? 4588844
关于积分的说明 14421594
捐赠科研通 4520646
什么是DOI,文献DOI怎么找? 2476796
邀请新用户注册赠送积分活动 1462282
关于科研通互助平台的介绍 1435188