Multimode process monitoring with Bayesian inference‐based finite Gaussian mixture models

贝叶斯推理 贝叶斯概率 多元正态分布 高斯分布 算法 故障检测与隔离 多元统计 高斯过程 计算机科学 概率逻辑 多模光纤 人工智能 数学 推论 机器学习 物理 执行机构 电信 光纤 量子力学
作者
Jie Yu,S. Joe Qin
出处
期刊:Aiche Journal [Wiley]
卷期号:54 (7): 1811-1829 被引量:485
标识
DOI:10.1002/aic.11515
摘要

Abstract For complex industrial processes with multiple operating conditions, the traditional multivariate process monitoring techniques such as principal component analysis (PCA) and partial least squares (PLS) are ill‐suited because the fundamental assumption that the operating data follow a unimodal Gaussian distribution usually becomes invalid. In this article, a novel multimode process monitoring approach based on finite Gaussian mixture model (FGMM) and Bayesian inference strategy is proposed. First, the process data are assumed to be from a number of different clusters, each of which corresponds to an operating mode and can be characterized by a Gaussian component. In the absence of a priori process knowledge, the Figueiredo–Jain (F–J) algorithm is then adopted to automatically optimize the number of Gaussian components and estimate their statistical distribution parameters. With the obtained FGMM, a Bayesian inference strategy is further utilized to compute the posterior probabilities of each monitored sample belonging to the multiple components and derive an integrated global probabilistic index for fault detection of multimode processes. The validity and effectiveness of the proposed monitoring approach are illustrated through three examples: (1) a simple multivariate linear system, (2) a simulated continuous stirred tank heater (CSTH) process, and (3) the Tennessee Eastman challenge problem. The comparison of monitoring results demonstrates that the proposed approach is superior to the conventional PCA method and can achieve accurate and early detection of various types of faults in multimode processes. © 2008 American Institute of Chemical Engineers AIChE J, 2008
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xw1234发布了新的文献求助10
1秒前
简单7879完成签到,获得积分10
1秒前
刘明发布了新的文献求助10
1秒前
浮游应助勤恳盛男采纳,获得10
1秒前
Xiaoqiang发布了新的文献求助10
2秒前
2秒前
2秒前
congyang完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
水硕完成签到,获得积分10
2秒前
3秒前
丘比特应助林林林林采纳,获得10
3秒前
Y奥完成签到,获得积分10
3秒前
4秒前
万能图书馆应助小小采纳,获得10
4秒前
shenshi完成签到,获得积分10
4秒前
爆米花应助历史真相采纳,获得10
4秒前
彭于彦祖应助流萤采纳,获得30
4秒前
文艺裘完成签到,获得积分10
4秒前
苹果青梦发布了新的文献求助10
4秒前
Yimi完成签到,获得积分10
5秒前
fys2022完成签到,获得积分10
5秒前
一天完成签到,获得积分10
5秒前
ahui完成签到 ,获得积分10
5秒前
方瑞豪完成签到,获得积分10
5秒前
小大夫完成签到 ,获得积分10
5秒前
HP发布了新的文献求助10
5秒前
lyz666完成签到,获得积分10
5秒前
张帅奔完成签到,获得积分10
5秒前
酷波er应助changl2023采纳,获得10
5秒前
苗条的晓夏完成签到,获得积分10
5秒前
起司猫完成签到 ,获得积分10
5秒前
Lucas应助柔之采纳,获得10
6秒前
小蘑菇应助jiaobuyimi采纳,获得10
6秒前
含糊的静芙应助文静荟采纳,获得50
7秒前
落后秋烟发布了新的文献求助10
7秒前
7秒前
在水一方应助xr采纳,获得10
7秒前
JamesPei应助嗯哼采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5489302
求助须知:如何正确求助?哪些是违规求助? 4588013
关于积分的说明 14417128
捐赠科研通 4519737
什么是DOI,文献DOI怎么找? 2476385
邀请新用户注册赠送积分活动 1461857
关于科研通互助平台的介绍 1435004