材料科学
场效应晶体管
过渡金属
晶体管
电子迁移率
工程物理
纳米技术
凝聚态物理
光电子学
电气工程
生物化学
催化作用
化学
电压
工程类
物理
作者
Zhihao Yu,Zhun‐Yong Ong,Songlin Li,Jianbin Xu,Gang Zhang,Yong‐Wei Zhang,Yi Shi,Xinran Wang
标识
DOI:10.1002/adfm.201604093
摘要
Transition‐metal dichalcogenides (TMDCs) are an important class of two‐dimensional (2D) layered materials for electronic and optoelectronic applications, due to their ultimate body thickness, sizable and tunable bandgap, and decent theoretical room‐temperature mobility. So far, however, all TMDCs show much lower mobility experimentally because of the collective effects by foreign impurities, which has become one of the most important limitations for their device applications. Here, taking MoS 2 as an example, the key factors that bring down the mobility in TMDC transistors, including phonons, charged impurities, defects, and charge traps, are reviewed. A theoretical model that quantitatively captures the scaling of mobility with temperature, carrier density, and thickness is introduced. By fitting the available mobility data from literature over the past few years, one obtains the density of impurities and traps for a wide range of transistor structures. It shows that interface engineering can effectively reduce the impurities, leading to improved device performances. For few‐layer TMDCs, the lopsided carrier distribution is analytically modeled to elucidate the experimental increase of mobility with the number of layers. From our analysis, it is clear that the charge transport in TMDC samples is a very complex problem that must be handled carefully.
科研通智能强力驱动
Strongly Powered by AbleSci AI