化学
侧链
磁导率
膜
变化(天文学)
生物物理学
生物化学
有机化学
物理
天体物理学
生物
聚合物
作者
Akihiro Furukawa,Chad E. Townsend,Joshua Schwochert,Cameron R. Pye,Maria A. Bednarek,R. Scott Lokey
标识
DOI:10.1021/acs.jmedchem.6b01246
摘要
Synthetic and natural cyclic peptides provide a testing ground for studying membrane permeability in nontraditional drug scaffolds. Cyclic peptomers, which incorporate peptide and N-alkylglycine (peptoid) residues, combine the stereochemical and geometric complexity of peptides with the functional group diversity accessible to peptoids. We synthesized cyclic peptomer libraries by split-pool techniques, separately permuting side chain and backbone geometry, and analyzed their membrane permeabilities using the parallel artificial membrane permeability assay. Nearly half of the side chain permutations had permeability coefficients (Papp) > 1 × 10–6 cm/s. Some backbone geometries enhanced permeability due to their ability to form more stable intramolecular hydrogen bond networks compared with other scaffolds. These observations suggest that hexameric cyclic peptomers can have good passive permeability even in the context of extensive side chain and backbone variation, and that high permeability can generally be achieved within a relatively wide lipophilicity range.
科研通智能强力驱动
Strongly Powered by AbleSci AI