巨噬细胞
炎症
线粒体ROS
重编程
氧化磷酸化
线粒体
先天免疫系统
细胞生物学
脂多糖
化学
免疫系统
生物
免疫学
体外
生物化学
细胞
作者
Jan Van den Bossche,Jeroen Baardman,Natasja A. Otto,Saskia van der Velden,Annette E. Neele,Susan M. van den Berg,Rosario Luque-Martin,Hung‐Jen Chen,Marieke C.S. Boshuizen,Mohamed I. M. Ahmed,Marten A. Hoeksema,Alex F. de Vos,Menno P.J. de Winther
出处
期刊:Cell Reports
[Cell Press]
日期:2016-10-01
卷期号:17 (3): 684-696
被引量:758
标识
DOI:10.1016/j.celrep.2016.09.008
摘要
Highlights•Mouse and human M1 macrophages fail to repolarize to M2 upon IL-4 restimulation•LPS + IFNγ treatment inhibits mitochondrial oxidative respiration in macrophages•Mitochondrial function is required for the repolarization to an M2 phenotype•NO blunts mitochondrial respiration and prevents plasticity in M1 macrophagesSummaryMacrophages are innate immune cells that adopt diverse activation states in response to their microenvironment. Editing macrophage activation to dampen inflammatory diseases by promoting the repolarization of inflammatory (M1) macrophages to anti-inflammatory (M2) macrophages is of high interest. Here, we find that mouse and human M1 macrophages fail to convert into M2 cells upon IL-4 exposure in vitro and in vivo. In sharp contrast, M2 macrophages are more plastic and readily repolarized into an inflammatory M1 state. We identify M1-associated inhibition of mitochondrial oxidative phosphorylation as the factor responsible for preventing M1→M2 repolarization. Inhibiting nitric oxide production, a key effector molecule in M1 cells, dampens the decline in mitochondrial function to improve metabolic and phenotypic reprogramming to M2 macrophages. Thus, inflammatory macrophage activation blunts oxidative phosphorylation, thereby preventing repolarization. Therapeutically restoring mitochondrial function might be useful to improve the reprogramming of inflammatory macrophages into anti-inflammatory cells to control disease.Graphical abstract
科研通智能强力驱动
Strongly Powered by AbleSci AI