数学
正则局部环
局部环
Dedekind切割
余维数
零除数
除数(代数几何)
理想(伦理)
克鲁尔维数
组合数学
序列(生物学)
扭转(腹足类)
规则环
离散数学
纯数学
戒指(化学)
Von-Neumann正则环
诺瑟人
域代数上的
遗传学
哲学
生物
医学
有机化学
认识论
化学
外科
标识
DOI:10.1215/ijm/1255631585
摘要
in an essential way on the fact established in 2 that for an unramified regular Tor (A, B) 0 for some R- local ring R and a torsion-free R-module A if module B, then Tor(A, B) 0 for all j >-i.In fact, if this property of Tor can be established for arbitrary regular local rings, then almost all the results of this paper extend immediately to all regular local rings.1. Some properties of Tor Before proceeding to the main results of this section we review briefly some of the basic facts concerning the codimension of a module as can be found forLet R be a local ring with maximal ideal m and A a nonzero R-module.A sequence of elements xl, xt in m is called an A-sequence if xl is not a zero-divisor in A and xi is not a zero-divisor for A/(xl,..., ,xi_)A for all i 2, t.If x,..., xt is an A-sequence, then it is easily seen that <= dim R (where dim R means the Krull dimension of R).Thus it makes sense to talk about maximal A-sequences.It can be shown that all maximal
科研通智能强力驱动
Strongly Powered by AbleSci AI