Fractional-Order Finite-Time Super-Twisting Sliding Mode Control of Micro Gyroscope Based on Double-Loop Fuzzy Neural Network

控制理论(社会学) 滑模控制 稳健性(进化) 人工神经网络 陀螺仪 非线性系统 数学 变结构控制 计算机科学 工程类 控制(管理) 人工智能 生物化学 化学 物理 量子力学 基因 航空航天工程
作者
Juntao Fei,Zhilin Feng
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (12): 7692-7706 被引量:157
标识
DOI:10.1109/tsmc.2020.2979979
摘要

This article proposes a fractional order nonsingular terminal super-twisting sliding mode control (FONT-STSMC) method for a micro gyroscope with unknown uncertainty based on the double-loop fuzzy neural network (DLFNN). First, the advantages of nonsingular terminal sliding control are adopted, a nonlinear function is used to design the sliding hyper plane, then the tracking error in the system could converge to zero in a specified finite time. Second, fractional order control can increase the order of differential and integral, which greatly improves the flexibility of control method. The fractional-order controller has some advantages that integer-order systems cannot achieve, thus obtaining better control effects than that without adding fractional order control. Furthermore, the chattering problem of control input can be effectively solved by using the super-twisting algorithm, which makes the control input smoother. Finally, the unknown model of the micro gyroscope is estimated by using the DLFNN. Because the DLFNN can adjust the base width, the center vector and the feedback gain of the inner and outer layers adaptively, the accurate approximation of the unknown model can be achieved, and the robustness and accuracy can be enhanced. The simulation results and the comparisons with conventional neural sliding mode control prove the presented scheme can realized better tracking property and estimate the unknown model more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助myself采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
CR7应助科研通管家采纳,获得20
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
2秒前
所所应助科研通管家采纳,获得10
2秒前
不想干活应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
不想干活应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
wuran发布了新的文献求助10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得50
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
不想干活应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
Maestro_S应助科研通管家采纳,获得10
3秒前
不想干活应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
不想干活应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
十有五应助科研通管家采纳,获得10
3秒前
不想干活应助Song采纳,获得10
4秒前
彭于晏应助三水采纳,获得10
5秒前
Owen应助炫炫炫采纳,获得10
5秒前
WIsh完成签到 ,获得积分10
6秒前
嗯嗯发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
学就完了发布了新的文献求助10
8秒前
漂亮的千万完成签到,获得积分10
9秒前
科研通AI5应助红柚采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Effects of sports drinks with different molecular weight carbohydrates on rehydration during endurance exercise: a comparative study 1000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4525218
求助须知:如何正确求助?哪些是违规求助? 3965580
关于积分的说明 12290439
捐赠科研通 3629891
什么是DOI,文献DOI怎么找? 1997573
邀请新用户注册赠送积分活动 1034016
科研通“疑难数据库(出版商)”最低求助积分说明 923630