亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Forecasting influenza activity using self-adaptive AI model and multi-source data in Chongqing, China

平均绝对百分比误差 均方误差 准备 统计 自回归积分移动平均 季节性流感 计算机科学 地理 2019年冠状病毒病(COVID-19) 医学 时间序列 数学 内科学 法学 传染病(医学专业) 政治学 疾病
作者
Kun Su,Liang Xu,Guanqiao Li,Xiaowen Ruan,Xian Li,Pan Deng,Xinmi Li,Qin Li,Xianxian Chen,Yu Xiong,Shaofeng Lu,Qi Li,Chaobo Shen,Wenge Tang,Rong Rong,Boran Hong,Yi Ning,Dongyan Long,Jiaying Xu,Xuanling Shi
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:47: 284-292 被引量:49
标识
DOI:10.1016/j.ebiom.2019.08.024
摘要

Early detection of influenza activity followed by timely response is a critical component of preparedness for seasonal influenza epidemic and influenza pandemic. However, most relevant studies were conducted at the regional or national level with regular seasonal influenza trends. There are few feasible strategies to forecast influenza activity at the local level with irregular trends.Multi-source electronic data, including historical percentage of influenza-like illness (ILI%), weather data, Baidu search index and Sina Weibo data of Chongqing, China, were collected and integrated into an innovative Self-adaptive AI Model (SAAIM), which was constructed by integrating Seasonal Autoregressive Integrated Moving Average model and XGBoost model using a self-adaptive weight adjustment mechanism. SAAIM was applied to ILI% forecast in Chongqing from 2017 to 2018, of which the performance was compared with three previously available models on forecasting.ILI% showed an irregular seasonal trend from 2012 to 2018 in Chongqing. Compared with three reference models, SAAIM achieved the best performance on forecasting ILI% of Chongqing with the mean absolute percentage error (MAPE) of 11·9%, 7·5%, and 11·9% during the periods of the year 2014-2016, 2017, and 2018 respectively. Among the three categories of source data, historical influenza activity contributed the most to the forecast accuracy by decreasing the MAPE by 19·6%, 43·1%, and 11·1%, followed by weather information (MAPE reduced by 3·3%, 17·1%, and 2·2%), and Internet-related public sentiment data (MAPE reduced by 1·1%, 0·9%, and 1·3%).Accurate influenza forecast in areas with irregular seasonal influenza trends can be made by SAAIM with multi-source electronic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助TiAmo采纳,获得10
14秒前
oleskarabach发布了新的文献求助10
21秒前
ZaZa完成签到,获得积分10
22秒前
23秒前
TiAmo发布了新的文献求助10
30秒前
35秒前
56秒前
1分钟前
辣味锅包肉完成签到,获得积分10
1分钟前
1分钟前
1分钟前
浮游应助oleskarabach采纳,获得10
1分钟前
大模型应助oleskarabach采纳,获得10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
余悸完成签到,获得积分10
2分钟前
2分钟前
小新小新完成签到 ,获得积分10
2分钟前
liuliu完成签到,获得积分20
2分钟前
圣飞云宇完成签到 ,获得积分10
2分钟前
LiangRen完成签到 ,获得积分10
2分钟前
2分钟前
无端发布了新的文献求助10
2分钟前
在水一方应助无端采纳,获得10
2分钟前
2分钟前
星辰大海应助Broadway Zhang采纳,获得10
3分钟前
3分钟前
3分钟前
nk完成签到 ,获得积分10
3分钟前
4分钟前
哈哈发布了新的文献求助10
4分钟前
哈哈完成签到,获得积分10
4分钟前
4分钟前
oleskarabach发布了新的文献求助10
4分钟前
5分钟前
5分钟前
5分钟前
tan发布了新的文献求助10
5分钟前
oleskarabach发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078209
求助须知:如何正确求助?哪些是违规求助? 4297037
关于积分的说明 13387745
捐赠科研通 4119669
什么是DOI,文献DOI怎么找? 2256149
邀请新用户注册赠送积分活动 1260461
关于科研通互助平台的介绍 1194019