CT-MRI pelvic deformable registration via deep learning

图像配准 人工智能 磁共振成像 计算机科学 深度学习 相似性(几何) 基本事实 人工神经网络 均方误差 医学影像学 初始化 计算机视觉 放射科 模式识别(心理学) 医学 图像(数学) 数学 统计 程序设计语言
作者
Shadab Momin,Yang Lei,Tonghe Wang,Yabo Fu,Pretesh Patel,Ashesh B. Jani,Walter J. Curran,Tian Liu,Xiaofeng Yang
标识
DOI:10.1117/12.2581069
摘要

An accurate and robust image registration of computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in establishing a desired radiation treatment plan. Traditional image similarity measures such as cross-correlation, mean absolute error, mean squared error have very limited success in multi modal MRI-CT image registration. In this study, we propose a deformable registration method based on unsupervised deep neural networks to register MRI and CT for pelvic patients. No ground truth deformation vector field (DVF) is needed during training. A cross-modality image similarity loss, called as self-correlation descriptor, is used as loss function to learn the trainable parameters in deep neural networks. After training, for a new patient's CT and MRI, the deformed MRI is obtained via first feeding the MRI and CT into the deep neural networks to derive the DVF, then deformed via spatial transformation on MRI and DVF. We evaluated our method by retrospectively revisiting 25 patients with MRI and CT acquired at pelvic region. Target registration error (TRE) was used to quantify the performance of the proposed method. The average TRE of the proposed method is 2.23±1.11 mm. It demonstrates the great potential of the proposed method in performing accurate image registration that can facilitate multimodality imaging treatment planning workflow in prostate cancer radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
yb发布了新的文献求助10
2秒前
星辰大海应助俊逸的翅膀采纳,获得10
3秒前
科研通AI5应助沉静的万天采纳,获得10
3秒前
4秒前
小丸子发布了新的文献求助10
6秒前
用头打碟发布了新的文献求助10
7秒前
Shanglinqin完成签到,获得积分10
7秒前
科研通AI5应助susan采纳,获得10
9秒前
科研通AI5应助XLC采纳,获得10
9秒前
卡卡西应助zhuxd采纳,获得10
9秒前
ff0110完成签到,获得积分10
10秒前
舒心的依风完成签到,获得积分10
10秒前
萌萌哒发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
13秒前
lwqz_2022完成签到 ,获得积分10
13秒前
用头打碟完成签到,获得积分20
13秒前
Garry完成签到,获得积分10
14秒前
14秒前
14秒前
科研通AI5应助蒜香炒田鸡采纳,获得10
14秒前
你好应助guajiguaji采纳,获得10
16秒前
XLC完成签到,获得积分20
16秒前
17秒前
17秒前
惘然完成签到 ,获得积分10
17秒前
Oracle发布了新的文献求助10
17秒前
18秒前
zhangyulong发布了新的文献求助10
18秒前
Singularity举报昭昭找不到求助涉嫌违规
19秒前
19秒前
萌萌哒完成签到,获得积分10
19秒前
科研通AI5应助123采纳,获得10
20秒前
高小絮发布了新的文献求助10
20秒前
孙文杰完成签到 ,获得积分10
22秒前
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802268
求助须知:如何正确求助?哪些是违规求助? 3348011
关于积分的说明 10335931
捐赠科研通 3063932
什么是DOI,文献DOI怎么找? 1682313
邀请新用户注册赠送积分活动 808016
科研通“疑难数据库(出版商)”最低求助积分说明 763997